Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def cli():
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
openpifpaf.decoder.cli(parser, force_complete_pose=False,
instance_threshold=0.1, seed_threshold=0.5)
openpifpaf.network.nets.cli(parser)
parser.add_argument('--disable-cuda', action='store_true',
help='disable CUDA')
parser.add_argument('--resolution', default=0.4, type=float,
help=('Resolution prescale factor from 640x480. '
'Will be rounded to multiples of 16.'))
parser.add_argument('--write-static-page', default=None,
help='directory in which to create a static version of this page')
parser.add_argument('--debug', default=False, action='store_true',
help='debug messages and autoreload')
parser.add_argument('--google-analytics',
help='provide a google analytics id to inject analytics code')
parser.add_argument('--host', dest='host',
default=os.environ.get('HOST', '127.0.0.1'),
def cli():
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
openpifpaf.decoder.cli(parser, force_complete_pose=False,
instance_threshold=0.1, seed_threshold=0.5)
openpifpaf.network.nets.cli(parser)
parser.add_argument('--disable-cuda', action='store_true',
help='disable CUDA')
parser.add_argument('--resolution', default=0.4, type=float,
help=('Resolution prescale factor from 640x480. '
'Will be rounded to multiples of 16.'))
parser.add_argument('--write-static-page', default=None,
help='directory in which to create a static version of this page')
parser.add_argument('--debug', default=False, action='store_true',
help='debug messages and autoreload')
parser.add_argument('--google-analytics',
help='provide a google analytics id to inject analytics code')
parser.add_argument('--host', dest='host',
default=os.environ.get('HOST', '127.0.0.1'),
help='host address for webserver, use 0.0.0.0 for global access')
parser.add_argument('--port', dest='port',
def __init__(self, width_height, args):
self.width_height = width_height
# load model
self.model, _ = openpifpaf.network.nets.factory_from_args(args)
self.model = self.model.to(args.device)
self.processor = openpifpaf.decoder.factory_from_args(args, self.model)
self.device = args.device
def __init__(self, width_height, args):
self.width_height = width_height
# load model
self.model, _ = openpifpaf.network.nets.factory_from_args(args)
self.model = self.model.to(args.device)
self.processor = openpifpaf.decoder.factory_from_args(args, self.model)
self.device = args.device
def single_image(self, b64image):
imgstr = re.search(r'base64,(.*)', b64image).group(1)
image_bytes = io.BytesIO(base64.b64decode(imgstr))
im = PIL.Image.open(image_bytes).convert('RGB')
target_wh = self.width_height
if (im.size[0] > im.size[1]) != (target_wh[0] > target_wh[1]):
target_wh = (target_wh[1], target_wh[0])
if im.size[0] != target_wh[0] or im.size[1] != target_wh[1]:
print('!!! have to resize image to', target_wh, ' from ', im.size)
im = im.resize(target_wh, PIL.Image.BICUBIC)
width_height = im.size
start = time.time()
preprocess = openpifpaf.transforms.EVAL_TRANSFORM
processed_image_cpu, _, __ = preprocess(im, [], None)
processed_image = processed_image_cpu.contiguous().to(self.device, non_blocking=True)
print('preprocessing time', time.time() - start)
all_fields = self.processor.fields(torch.unsqueeze(processed_image.float(), 0))[0]
keypoint_sets, scores = self.processor.keypoint_sets(all_fields)
# normalize scale
keypoint_sets[:, :, 0] /= processed_image_cpu.shape[2]
keypoint_sets[:, :, 1] /= processed_image_cpu.shape[1]
return keypoint_sets, scores, width_height