How to use openjij - 10 common examples

To help you get started, we’ve selected a few openjij examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github OpenJij / OpenJij / tests / test_utils.py View on Github external
def test_benchmark(self):
        h = {0: 1}
        J = {(0, 1):-1.0, (1,2): -1.0}

        def solver(time_param, *args):
            sa_samp = oj.SASampler()
            sa_samp.step_num = time_param 
            sa_samp.iteration = 10
            return sa_samp.sample_ising(h, J)

        # logger setting
        ground_state = [-1, -1, -1]
        ground_energy = oj.BinaryQuadraticModel(h, J).calc_energy(ground_state)
        step_num_list = np.linspace(1, 5, 5, dtype=np.int)
        bm_res = oj.solver_benchmark(
            solver=solver,
            time_list=step_num_list,
            solutions=[ground_state])
        self.assertTrue(set(bm_res) >= {'time', 'success_prob', 'residual_energy', 'tts', 'info'})
        self.assertEqual(len(bm_res) ,len(step_num_list))

        bench = oj.solver_benchmark(
            solver=solver,
            time_list=step_num_list,
            ref_energy=ground_energy, measure_with_energy=True)
        self.assertTrue(set(bench) >= {'time', 'success_prob', 'residual_energy', 'tts', 'info'})
github OpenJij / OpenJij / tests / test_model.py View on Github external
def test_bqm_constructor(self):
        # Test BinaryQuadraticModel constructor
        bqm = oj.BinaryQuadraticModel(self.h, self.J)
        self.assertEqual(type(bqm.ising_interactions()), np.ndarray)

        self.assertEqual(bqm.var_type, oj.SPIN)

        dense_graph = bqm.get_cxxjij_ising_graph(sparse=False)
        self.assertTrue(isinstance(dense_graph, cj.graph.Dense))

        bqm_qubo = oj.BinaryQuadraticModel.from_qubo(self.Q)
        self.assertEqual(bqm_qubo.var_type, oj.BINARY)
github OpenJij / OpenJij / tests / test_model.py View on Github external
def test_bqm_calc_energy(self):
        # Test to calculate energy

        # Test Ising energy
        bqm = oj.BinaryQuadraticModel(self.h, self.J)
        ising_energy_bqm = bqm.calc_energy(self.spins)
        true_ising_e = calculate_ising_energy(self.h, self.J, self.spins)
        self.assertEqual(ising_energy_bqm, true_ising_e)

        # Test QUBO energy
        bqm = oj.BinaryQuadraticModel.from_qubo(Q=self.Q)
        qubo_energy_bqm = bqm.calc_energy(self.binaries)
        true_qubo_e = calculate_qubo_energy(self.Q, self.binaries)
        self.assertEqual(qubo_energy_bqm, true_qubo_e)

        # QUBO == Ising
        spins = [1, 1, -1, 1]
        binary = [1, 1, 0, 1]
        qubo_bqm = oj.BinaryQuadraticModel.from_qubo(Q=self.Q)
        # ising_mat = qubo_bqm.ising_interactions()
        # h, J = {}, {}
github OpenJij / OpenJij / tests / test_model.py View on Github external
bqm = oj.BinaryQuadraticModel(self.h, self.J)
        ising_matrix = np.array([
            [1, -1,  0,  0],
            [-1, -2, -3, 0],
            [0, -3, 0, 0.5],
            [0, 0, 0.5, 0]
        ])
        np.testing.assert_array_equal(
            bqm.ising_interactions(), ising_matrix
        )

        # check Hij = Jij + Jji
        J = self.J.copy()
        J[0, 1] /= 3
        J[1, 0] = J[0, 1] * 2
        bqm = oj.BinaryQuadraticModel(self.h, J)
        np.testing.assert_array_equal(
            bqm.ising_interactions(), ising_matrix
        )
github OpenJij / OpenJij / tests / test_sampler.py View on Github external
def test_sa_sweeps(self):
        iteration = 10
        sampler = oj.SASampler()
        res = sampler.sample_ising(self.h, self.J, num_reads=iteration)
        self.assertEqual(iteration, len(res.energies))

        sampler = oj.SASampler(num_reads=iteration)
        res = sampler.sample_ising(self.h, self.J)
        self.assertEqual(iteration, len(res.energies))
github OpenJij / OpenJij / tests / test_sampler.py View on Github external
def test_sa(self):
        initial_state = [1 for _ in range(self.size)]

        response = oj.SASampler().sample_ising(
            self.h, self.J, initial_state=initial_state, seed=1)
        self.assertEqual(len(response.states), 1)
        self.assertListEqual(response.states[0], [-1, -1, -1])

        response = oj.SASampler(beta_max=100).sample_qubo(self.Q, seed=1)
        self.assertEqual(len(response.states), 1)
        self.assertListEqual(response.states[0], [0, 0, 0])

        vaild_sche = [(beta, 1) for beta in np.linspace(-1, 1, 5)]
        with self.assertRaises(ValueError):
            sampler = oj.SASampler(schedule=vaild_sche)
            sampler.sample_ising({}, {})
github OpenJij / OpenJij / tests / test_sampler.py View on Github external
def test_sa_sweeps(self):
        iteration = 10
        sampler = oj.SASampler()
        res = sampler.sample_ising(self.h, self.J, num_reads=iteration)
        self.assertEqual(iteration, len(res.energies))

        sampler = oj.SASampler(num_reads=iteration)
        res = sampler.sample_ising(self.h, self.J)
        self.assertEqual(iteration, len(res.energies))
github OpenJij / OpenJij / tests / test_sampler.py View on Github external
def test_sa(self):
        initial_state = [1 for _ in range(self.size)]

        response = oj.SASampler().sample_ising(
            self.h, self.J, initial_state=initial_state, seed=1)
        self.assertEqual(len(response.states), 1)
        self.assertListEqual(response.states[0], [-1, -1, -1])

        response = oj.SASampler(beta_max=100).sample_qubo(self.Q, seed=1)
        self.assertEqual(len(response.states), 1)
        self.assertListEqual(response.states[0], [0, 0, 0])

        vaild_sche = [(beta, 1) for beta in np.linspace(-1, 1, 5)]
        with self.assertRaises(ValueError):
            sampler = oj.SASampler(schedule=vaild_sche)
            sampler.sample_ising({}, {})
github OpenJij / OpenJij / tests / test_sampler.py View on Github external
def test_reverse_annealing(self):
        seed_for_mc = 1
        initial_state = [0, 0, 0]
        qubo = {
            (0, 0): 1, (1, 1): -1, (2, 2): 2,
            (0, 1): 1, (1, 2): -1, (2, 0): -1
        }
        # solution is [0, 1, 0]
        solution = [0, 1, 0]

        # Reverse simulated annealing
        # beta, step_length
        reverse_schedule = [
            [10, 3], [1, 3], [0.5, 3], [1, 3], [10, 5]
        ]
        rsa_sampler = oj.SASampler(schedule=reverse_schedule, iteration=10)
        res = rsa_sampler.sample_qubo(
            qubo, initial_state=initial_state, seed=seed_for_mc)
        self.assertListEqual(
            solution,
            list(res.min_samples['states'][0])
        )

        # Reverse simulated quantum annealing
        # annealing parameter s, step_length
        reverse_schedule = [
            [1, 1], [0.3, 3], [0.1, 5], [0.3, 3], [1, 3]
        ]
        rqa_sampler = oj.SQASampler(schedule=reverse_schedule, iteration=10)
        res = rqa_sampler.sample_qubo(
            qubo, initial_state=initial_state, seed=seed_for_mc)
        self.assertListEqual(
github OpenJij / OpenJij / tests / test_sampler.py View on Github external
def test_swendsenwang(self):
        sampler = oj.SASampler()
        initial_state = [1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1]
        h = {0: -1, 10: -1}
        J = {(i, i+1): -1 for i in range(10)}
        res = sampler.sample_ising(h, J,
                                   updater="swendsenwang",
                                   seed=1, initial_state=initial_state)
        self.assertListEqual(res.states[0], [1]*11)