How to use the onnxruntime.__version__ function in onnxruntime

To help you get started, we’ve selected a few onnxruntime examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github onnx / sklearn-onnx / tests / test_sklearn_one_hot_encoder_converter.py View on Github external
    @unittest.skipIf(StrictVersion(ort_version) <= StrictVersion("0.4.0"),
                     reason="issues with shapes")
    @unittest.skipIf(
        not one_hot_encoder_supports_string(),
        reason="OneHotEncoder did not have categories_ before 0.20",
    )
    def test_model_one_hot_encoder(self):
        model = OneHotEncoder(categories='auto')
        data = numpy.array([[1, 2, 3], [4, 3, 0], [0, 1, 4], [0, 5, 6]],
                           dtype=numpy.int64)
        model.fit(data)
        model_onnx = convert_sklearn(
            model,
            "scikit-learn one-hot encoder",
            [("input", Int64TensorType([None, 3]))],
        )
        self.assertTrue(model_onnx is not None)
github onnx / sklearn-onnx / tests / test_sklearn_one_hot_encoder_converter.py View on Github external
    @unittest.skipIf(StrictVersion(ort_version) <= StrictVersion("0.4.0"),
                     reason="issues with shapes")
    @unittest.skipIf(
        not one_hot_encoder_supports_string(),
        reason="OneHotEncoder does not support strings in 0.19",
    )
    def test_one_hot_encoder_twocats(self):
        data = [["cat2"], ["cat1"]]
        model = OneHotEncoder(categories="auto")
        model.fit(data)
        inputs = [("input1", StringTensorType([None, 1]))]
        model_onnx = convert_sklearn(model, "one-hot encoder two string cats",
                                     inputs)
        self.assertTrue(model_onnx is not None)
        dump_data_and_model(
            data,
            model,
github onnx / sklearn-onnx / tests / test_sklearn_gradient_boosting_converters.py View on Github external
        StrictVersion(__version__) <= StrictVersion(THRESHOLD),
        reason="Depends on PR #1015 onnxruntime.")
    def test_gradient_boosting_classifier1Deviance(self):
        model = GradientBoostingClassifier(n_estimators=1, max_depth=2)
        X, y = make_classification(10, n_features=4, random_state=42)
        X = X[:, :2]
        model.fit(X, y)

        for cl in [None, 0.231, 1e-6, 0.9]:
            if cl is not None:
                model.init_.class_prior_ = np.array([cl, cl])
            initial_types = [('input', FloatTensorType((None, X.shape[1])))]
            model_onnx = convert_sklearn(model, initial_types=initial_types)
            if "Regressor" in str(model_onnx):
                raise AssertionError(str(model_onnx))
            sess = InferenceSession(model_onnx.SerializeToString())
            res = sess.run(None, {'input': X.astype(np.float32)})
github onnx / tensorflow-onnx / tests / common.py View on Github external
def _get_backend_version(self):
        version = None
        if self.backend == "onnxruntime":
            import onnxruntime as ort
            version = ort.__version__
        elif self.backend == "caffe2":
            # TODO: get caffe2 version
            pass

        if version:
            version = LooseVersion(version)
        return version
github onnx / sklearn-onnx / tests / test_sklearn_glm_regressor_converter.py View on Github external
        StrictVersion(ort_version) <= StrictVersion("0.4.0"),
        reason="old onnxruntime does not support double")
    def test_model_linear_regression64(self):
        model, X = fit_regression_model(linear_model.LinearRegression())
        model_onnx = convert_sklearn(model, "linear regression",
                                     [("input", DoubleTensorType(X.shape))],
                                     dtype=numpy.float64)
        self.assertIsNotNone(model_onnx)
        self.assertIn("elem_type: 11", str(model_onnx))
github onnx / sklearn-onnx / docs / examples / plot_benchmark_pipeline.py View on Github external
compare_objects(skl_outputs['predict_proba'], onnx_outputs[1])
        print("benchmark", step['model'].__class__)
        print("scikit-learn")
        print(timeit("step['model'].predict_proba(X_digits[:1])",
                     number=10000, globals=globals()))
    print("onnxruntime")
    print(timeit("sess.run(None, {'input': X_digits[:1].astype(np.float32)})",
                 number=10000, globals=globals()))

#################################
# **Versions used for this example**

print("numpy:", numpy.__version__)
print("scikit-learn:", sklearn.__version__)
print("onnx: ", onnx.__version__)
print("onnxruntime: ", onnxruntime.__version__)
print("skl2onnx: ", skl2onnx.__version__)
github onnx / sklearn-onnx / docs / examples / plot_onnx_operators.py View on Github external
os.system('dot -O -Gdpi=300 -Tpng pipeline_transpose2x.dot')

image = plt.imread("pipeline_transpose2x.dot.png")
fig, ax = plt.subplots(figsize=(40, 20))
ax.imshow(image)
ax.axis('off')

#################################
# **Versions used for this example**

import numpy, sklearn  # noqa
print("numpy:", numpy.__version__)
print("scikit-learn:", sklearn.__version__)
import onnx, onnxruntime, skl2onnx  # noqa
print("onnx: ", onnx.__version__)
print("onnxruntime: ", onnxruntime.__version__)
print("skl2onnx: ", skl2onnx.__version__)
github onnx / sklearn-onnx / docs / examples / plot_pipeline_lightgbm.py View on Github external
pydot_graph.write_dot("pipeline.dot")

os.system('dot -O -Gdpi=300 -Tpng pipeline.dot')

image = plt.imread("pipeline.dot.png")
fig, ax = plt.subplots(figsize=(40, 20))
ax.imshow(image)
ax.axis('off')

#################################
# **Versions used for this example**

print("numpy:", numpy.__version__)
print("scikit-learn:", sklearn.__version__)
print("onnx: ", onnx.__version__)
print("onnxruntime: ", onnxruntime.__version__)
print("skl2onnx: ", skl2onnx.__version__)
print("onnxmltools: ", onnxmltools.__version__)
print("lightgbm: ", lightgbm.__version__)
github onnx / sklearn-onnx / docs / examples / plot_backend.py View on Github external
label, proba = rep.run(x)
print("label={}".format(label))
print("probabilities={}".format(proba))

#######################################
# The backend API is implemented by other frameworks
# and makes it easier to switch between multiple runtimes
# with the same API.

#################################
# **Versions used for this example**

print("numpy:", numpy.__version__)
print("scikit-learn:", sklearn.__version__)
print("onnx: ", onnx.__version__)
print("onnxruntime: ", onnxruntime.__version__)
print("skl2onnx: ", skl2onnx.__version__)