Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def partial_fit(
self, modelname, Xname, Yname=None, pure_python=True, **kwargs):
model = self.model_store.get(modelname)
X, metaX = self.data_store.get(Xname), self.data_store.metadata(Xname)
Y, metaY = None, None
if Yname:
Y, metaY = (self.data_store.get(Yname),
self.data_store.metadata(Yname))
model.partial_fit(reshaped(X), reshaped(Y), **kwargs)
# store information required for retraining
model_attrs = {
'metaX': metaX.to_mongo(),
'metaY': metaY.to_mongo() if metaY is not None else None,
}
try:
import sklearn
model_attrs['scikit-learn'] = sklearn.__version__
except:
model_attrs['scikit-learn'] = 'unknown'
meta = self.model_store.put(model, modelname, attributes=model_attrs)
return meta
def fit(self, modelname, Xname, Yname=None, pure_python=True, **kwargs):
model = self.model_store.get(modelname)
X, metaX = self.data_store.get(Xname), self.data_store.metadata(Xname)
Y, metaY = None, None
if Yname:
Y, metaY = (self.data_store.get(Yname),
self.data_store.metadata(Yname))
model.fit(reshaped(X), reshaped(Y), **kwargs)
# store information required for retraining
model_attrs = {
'metaX': metaX.to_mongo(),
'metaY': metaY.to_mongo() if metaY is not None else None,
}
try:
import sklearn
model_attrs['scikit-learn'] = sklearn.__version__
except:
model_attrs['scikit-learn'] = 'unknown'
meta = self.model_store.put(model, modelname, attributes=model_attrs)
return meta
def score(
self, modelname, Xname, Yname, rName=None, pure_python=True,
**kwargs):
model = self.model_store.get(modelname)
X = self.data_store.get(Xname)
Y = self.data_store.get(Yname)
result = model.score(reshaped(X), reshaped(Y), **kwargs)
if rName:
meta = self.model_store.put(result, rName)
result = meta
return result
def predict_proba(
self, modelname, Xname, rName=None, pure_python=True, **kwargs):
data = self.data_store.get(Xname)
model = self.model_store.get(modelname)
result = model.predict_proba(reshaped(data), **kwargs)
if pure_python:
result = result.tolist()
if rName:
meta = self.data_store.put(result, rName)
result = meta
return result
def decision_function(self, modelname, Xname, rName=None, pure_python=True, **kwargs):
model = self.model_store.get(modelname)
X = self.data_store.get(Xname)
result = model.decision_function(reshaped(X), **kwargs)
if pure_python:
result = result.tolist()
if rName:
meta = self.data_store.put(result, rName)
result = meta
return result
def fit_transform(
self, modelname, Xname, Yname=None, rName=None, pure_python=True,
**kwargs):
model = self.model_store.get(modelname)
X, metaX = self.data_store.get(Xname), self.data_store.metadata(Xname)
Y, metaY = None, None
if Yname:
Y, metaY = (self.data_store.get(Yname),
self.data_store.metadata(Yname))
result = model.fit_transform(reshaped(X), reshaped(Y), **kwargs)
# store information required for retraining
model_attrs = {
'metaX': metaX.to_mongo(),
'metaY': metaY.to_mongo() if metaY is not None else None
}
try:
import sklearn
model_attrs['scikit-learn'] = sklearn.__version__
except:
model_attrs['scikit-learn'] = 'unknown'
meta = self.model_store.put(model, modelname, attributes=model_attrs)
if pure_python:
result = result.tolist()
if rName:
meta = self.data_store.put(result, rName)
result = meta
def predict(
self, modelname, Xname, rName=None, pure_python=True, **kwargs):
data = self.data_store.get(Xname)
model = self.model_store.get(modelname)
result = model.predict(reshaped(data), **kwargs)
if pure_python:
result = result.tolist()
if rName:
meta = self.data_store.put(result, rName)
result = meta
return result