How to use the ogb.nodeproppred.Evaluator function in ogb

To help you get started, we’ve selected a few ogb examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github GraphSAINT / GraphSAINT / graphsaint / open_graph_benchmark / train_ogbn-products.py View on Github external
Hanqing Zeng (zengh@usc.edu);   Hongkuan Zhou (hongkuaz@usc.edu)
"""

from graphsaint.globals import *
from graphsaint.pytorch_version.models import GraphSAINT
from graphsaint.pytorch_version.minibatch import Minibatch
from graphsaint.utils import *
from graphsaint.metric import *
from graphsaint.pytorch_version.utils import *
from  ogb.nodeproppred import Evaluator

import torch
import time

evaluator=Evaluator(name='ogbn-products')

def evaluate_full_batch(model, minibatch, mode='val'):
    """
    Full batch evaluation: for validation and test sets only.
        When calculating the F1 score, we will mask the relevant root nodes
        (e.g., those belonging to the val / test sets).
    """
    loss,preds,labels = model.eval_step(*minibatch.one_batch(mode=mode))
    if mode == 'val':
        node_target = [minibatch.node_val]
    elif mode == 'test':
        node_target = [minibatch.node_test]
    else:
        assert mode == 'valtest'
        node_target = [minibatch.node_val, minibatch.node_test]
    labels = labels.argmax(dim=-1, keepdim=True)

ogb

Open Graph Benchmark

MIT
Latest version published 2 years ago

Package Health Score

55 / 100
Full package analysis

Similar packages