Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
pml_pp = pp.get_preprocess_val(ppln_sans_predictor, col_names, model)
trfm_dict_kwargs['TransformationDictionary'] = pml_pp['trfm_dict']
derived_col_names = pml_pp['derived_col_names']
col_names = pml_pp['preprocessed_col_names']
categoric_values = pml_pp['categorical_feat_values']
mining_imp_val = pml_pp['mining_imp_values']
PMML_kwargs = get_PMML_kwargs(model,
derived_col_names,
col_names,
target_name,
mining_imp_val,
categoric_values,
model_name)
pmml = pml.PMML(
version=PMML_SCHEMA.VERSION.value,
Header=sklToPmml.get_header(description),
DataDictionary=sklToPmml.get_data_dictionary(model, col_names, target_name, categoric_values),
**trfm_dict_kwargs,
**PMML_kwargs
)
pmml.export(outfile=open(pmml_f_name, "w"), level=0)
pml_pp = pp.get_preprocess_val(ppln_sans_predictor, col_names, model)
trfm_dict_kwargs['TransformationDictionary'] = pml_pp['trfm_dict']
derived_col_names = pml_pp['derived_col_names']
col_names = pml_pp['preprocessed_col_names']
categoric_values = pml_pp['categorical_feat_values']
mining_imp_val = pml_pp['mining_imp_values']
PMML_kwargs = get_PMML_kwargs(model,
derived_col_names,
col_names,
target_name,
mining_imp_val,
categoric_values,
model_name)
pmml = pml.PMML(
version=PMML_SCHEMA.VERSION.value,
Header=sklToPmml.get_header(description),
DataDictionary=sklToPmml.get_data_dictionary(model, col_names, target_name, categoric_values),
**trfm_dict_kwargs,
**PMML_kwargs
)
pmml.export(outfile=open(pmml_f_name, "w"), level=0)
Name of the Target column.
mining_imp_val : tuple
Contains the mining_attributes,mining_strategy, mining_impute_value.
categoric_values : tuple
Contains Categorical attribute names and its values
model_name : string
Name of the model
Returns
-------
mining_models :
Returns Nyoka's MiningModel object
"""
model_kwargs = sklToPmml.get_model_kwargs(model, col_names, target_name, mining_imp_val, categoric_values)
if 'XGBRegressor' in str(model.__class__):
model_kwargs['Targets'] = sklToPmml.get_targets(model, target_name)
mining_models = list()
mining_models.append(pml.MiningModel(
modelName=model_name if model_name else "XGBoostModel",
Segmentation=get_outer_segmentation(model, derived_col_names, col_names, target_name, mining_imp_val,categoric_values,model_name),
**model_kwargs
))
return mining_models