Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
tp = net_output * y_onehot
fp = net_output * (1 - y_onehot)
fn = (1 - net_output) * y_onehot
if mask is not None:
tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp, dim=1)), dim=1)
fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp, dim=1)), dim=1)
fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn, dim=1)), dim=1)
if square:
tp = tp ** 2
fp = fp ** 2
fn = fn ** 2
tp = sum_tensor(tp, axes, keepdim=False)
fp = sum_tensor(fp, axes, keepdim=False)
fn = sum_tensor(fn, axes, keepdim=False)
return tp, fp, fn
y_onehot = y_onehot.cuda(net_output.device.index)
y_onehot.scatter_(1, gt, 1)
if self.batch_dice:
axes = [0] + list(range(2, len(shp_x)))
else:
axes = list(range(2, len(shp_x)))
if self.apply_nonlin is not None:
softmax_output = self.apply_nonlin(net_output)
# no object value
bg_onehot = 1 - y_onehot
squared_error = (y_onehot - softmax_output)**2
specificity_part = sum_tensor(squared_error*y_onehot, axes)/(sum_tensor(y_onehot, axes)+self.smooth)
sensitivity_part = sum_tensor(squared_error*bg_onehot, axes)/(sum_tensor(bg_onehot, axes)+self.smooth)
ss = self.r * specificity_part + (1-self.r) * sensitivity_part
if not self.do_bg:
if self.batch_dice:
ss = ss[1:]
else:
ss = ss[:, 1:]
ss = ss.mean()
return ss
tp = net_output * y_onehot
fp = net_output * (1 - y_onehot)
fn = (1 - net_output) * y_onehot
if mask is not None:
tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp, dim=1)), dim=1)
fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp, dim=1)), dim=1)
fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn, dim=1)), dim=1)
if square:
tp = tp ** 2
fp = fp ** 2
fn = fn ** 2
tp = sum_tensor(tp, axes, keepdim=False)
fp = sum_tensor(fp, axes, keepdim=False)
fn = sum_tensor(fn, axes, keepdim=False)
return tp, fp, fn
tp = net_output * y_onehot
fp = net_output * (1 - y_onehot)
fn = (1 - net_output) * y_onehot
if mask is not None:
tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp, dim=1)), dim=1)
fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp, dim=1)), dim=1)
fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn, dim=1)), dim=1)
if square:
tp = tp ** 2
fp = fp ** 2
fn = fn ** 2
tp = sum_tensor(tp, axes, keepdim=False)
fp = sum_tensor(fp, axes, keepdim=False)
fn = sum_tensor(fn, axes, keepdim=False)
return tp, fp, fn
tp = net_output * y_onehot
fp = net_output * (1 - y_onehot)
fn = (1 - net_output) * y_onehot
if mask is not None:
tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp, dim=1)), dim=1)
fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp, dim=1)), dim=1)
fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn, dim=1)), dim=1)
if square:
tp = tp ** 2
fp = fp ** 2
fn = fn ** 2
tp = sum_tensor(tp, axes, keepdim=False)
fp = sum_tensor(fp, axes, keepdim=False)
fn = sum_tensor(fn, axes, keepdim=False)
return tp, fp, fn
fp = net_output * (1 - y_onehot)
fn = (1 - net_output) * y_onehot
if mask is not None:
tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp, dim=1)), dim=1)
fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp, dim=1)), dim=1)
fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn, dim=1)), dim=1)
if square:
tp = tp ** 2
fp = fp ** 2
fn = fn ** 2
tp = sum_tensor(tp, axes, keepdim=False)
fp = sum_tensor(fp, axes, keepdim=False)
fn = sum_tensor(fn, axes, keepdim=False)
return tp, fp, fn