Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
import nni
def max_pool(k):
pass
h_conv1 = 1
nni.choice({'foo': foo, 'bar': bar})(1)
conv_size = nni.choice({2: 2, 3: 3, 5: 5, 7: 7}, name='conv_size')
abc = nni.choice({'2': '2', 3: 3, '(5 * 6)': 5 * 6, 7: 7}, name='abc')
h_pool1 = nni.function_choice({'max_pool': lambda : max_pool(h_conv1),
'h_conv1': lambda : h_conv1,
'avg_pool': lambda : avg_pool(h_conv2, h_conv3)}
)
h_pool1 = nni.function_choice({'max_pool(h_conv1)': lambda : max_pool(
h_conv1), 'avg_pool(h_conv2, h_conv3)': lambda : avg_pool(h_conv2,
h_conv3)}, name='max_pool')
h_pool2 = nni.function_choice({'max_poo(h_conv1)': lambda : max_poo(h_conv1
), '(2 * 3 + 4)': lambda : 2 * 3 + 4, '(lambda x: 1 + x)': lambda : lambda
x: 1 + x}, name='max_poo')
tmp = nni.qlognormal(1.2, 3, 4.5)
test_acc = 1
nni.report_intermediate_result(test_acc)
test_acc = 2
import nni
def max_pool(k):
pass
h_conv1 = 1
conv_size = nni.choice({2: 2, 3: 3, 5: 5, 7: 7}, name='conv_size')
abc = nni.choice({'2': '2', 3: 3, '(5 * 6)': 5 * 6, "{(1): 2, '3': 4}": {(1
): 2, '3': 4}, '[1, 2, 3]': [1, 2, 3]}, name='abc')
h_pool1 = nni.function_choice({'max_pool(h_conv1)': lambda : max_pool(
h_conv1), 'avg_pool(h_conv2, h_conv3)': lambda : avg_pool(h_conv2,
h_conv3)}, name='max_pool')
h_pool2 = nni.function_choice({'max_poo(h_conv1)': lambda : max_poo(h_conv1
), '(2 * 3 + 4)': lambda : 2 * 3 + 4, '(lambda x: 1 + x)': lambda : lambda
x: 1 + x}, name='max_poo')
test_acc = 1
nni.report_intermediate_result(test_acc)
test_acc = 2
nni.report_final_result(test_acc)
mnist_network = MnistNetwork()
mnist_network.build_network()
logger.debug('Mnist build network done.')
graph_location = tempfile.mkdtemp()
logger.debug('Saving graph to: %s' % graph_location)
train_writer = tf.summary.FileWriter(graph_location)
train_writer.add_graph(tf.get_default_graph())
test_acc = 0.0
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
batch_num = 200
for i in range(batch_num):
batch_size = nni.choice({50: 50, 250: 250, 500: 500}, name=
'batch_size')
batch = mnist.train.next_batch(batch_size)
dropout_rate = nni.choice({1: 1, 5: 5}, name='dropout_rate')
mnist_network.train_step.run(feed_dict={mnist_network.x: batch[
0], mnist_network.y: batch[1], mnist_network.keep_prob:
dropout_rate})
if i % 100 == 0:
test_acc = mnist_network.accuracy.eval(feed_dict={
mnist_network.x: mnist.test.images, mnist_network.y:
mnist.test.labels, mnist_network.keep_prob: 1.0})
nni.report_intermediate_result(test_acc)
test_acc = mnist_network.accuracy.eval(feed_dict={mnist_network.x:
mnist.test.images, mnist_network.y: mnist.test.labels,
mnist_network.keep_prob: 1.0})
nni.report_final_result(test_acc)
import nni
def max_pool(k):
pass
h_conv1 = 1
conv_size = nni.choice({2: 2, 3: 3, 5: 5, 7: 7}, name='conv_size')
abc = nni.choice({'2': '2', 3: 3, '(5 * 6)': 5 * 6, "{(1): 2, '3': 4}": {(1
): 2, '3': 4}, '[1, 2, 3]': [1, 2, 3]}, name='abc')
h_pool1 = nni.function_choice({'max_pool(h_conv1)': lambda : max_pool(
h_conv1), 'avg_pool(h_conv2, h_conv3)': lambda : avg_pool(h_conv2,
h_conv3)}, name='max_pool')
h_pool2 = nni.function_choice({'max_poo(h_conv1)': lambda : max_poo(h_conv1
), '(2 * 3 + 4)': lambda : 2 * 3 + 4, '(lambda x: 1 + x)': lambda : lambda
x: 1 + x}, name='max_poo')
test_acc = 1
nni.report_intermediate_result(test_acc)
test_acc = 2
nni.report_final_result(test_acc)
channel_2_num=params['channel_2_num'], conv_size=params['conv_size'
], hidden_size=params['hidden_size'], pool_size=params['pool_size'],
learning_rate=params['learning_rate'])
mnist_network.build_network()
logger.debug('Mnist build network done.')
graph_location = tempfile.mkdtemp()
logger.debug('Saving graph to: %s', graph_location)
train_writer = tf.summary.FileWriter(graph_location)
train_writer.add_graph(tf.get_default_graph())
test_acc = 0.0
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
batch_num = nni.choice(50, 250, 500, name='batch_num')
for i in range(batch_num):
batch = mnist.train.next_batch(batch_num)
dropout_rate = nni.choice(1, 5, name='dropout_rate')
mnist_network.train_step.run(feed_dict={mnist_network.images:
batch[0], mnist_network.labels: batch[1], mnist_network.
keep_prob: dropout_rate})
if i % 100 == 0:
test_acc = mnist_network.accuracy.eval(feed_dict={
mnist_network.images: mnist.test.images, mnist_network.
labels: mnist.test.labels, mnist_network.keep_prob: 1.0})
nni.report_intermediate_result(test_acc)
logger.debug('test accuracy %g', test_acc)
logger.debug('Pipe send intermediate result done.')
test_acc = mnist_network.accuracy.eval(feed_dict={mnist_network.
images: mnist.test.images, mnist_network.labels: mnist.test.
labels, mnist_network.keep_prob: 1.0})
nni.report_final_result(test_acc)
logger.debug('Final result is %g', test_acc)
logger.debug('Send final result done.')
mnist_network = MnistNetwork(channel_1_num=params['channel_1_num'],
channel_2_num=params['channel_2_num'],
pool_size=params['pool_size'])
mnist_network.build_network()
logger.debug('Mnist build network done.')
# Write log
graph_location = tempfile.mkdtemp()
logger.debug('Saving graph to: %s', graph_location)
train_writer = tf.summary.FileWriter(graph_location)
train_writer.add_graph(tf.get_default_graph())
test_acc = 0.0
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
batch_num = nni.choice(50, 250, 500, name='batch_num')
for i in range(batch_num):
batch = mnist.train.next_batch(batch_num)
dropout_rate = nni.choice(1, 5, name='dropout_rate')
mnist_network.train_step.run(feed_dict={mnist_network.images: batch[0],
mnist_network.labels: batch[1],
mnist_network.keep_prob: dropout_rate}
)
if i % 100 == 0:
test_acc = mnist_network.accuracy.eval(
feed_dict={mnist_network.images: mnist.test.images,
mnist_network.labels: mnist.test.labels,
mnist_network.keep_prob: 1.0})
nni.report_intermediate_result(test_acc)
logger.debug('test accuracy %g', test_acc)
mnist_network.build_network()
logger.debug('Mnist build network done.')
# Write log
graph_location = tempfile.mkdtemp()
logger.debug('Saving graph to: %s', graph_location)
train_writer = tf.summary.FileWriter(graph_location)
train_writer.add_graph(tf.get_default_graph())
test_acc = 0.0
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
batch_num = nni.choice(50, 250, 500, name='batch_num')
for i in range(batch_num):
batch = mnist.train.next_batch(batch_num)
dropout_rate = nni.choice(1, 5, name='dropout_rate')
mnist_network.train_step.run(feed_dict={mnist_network.images: batch[0],
mnist_network.labels: batch[1],
mnist_network.keep_prob: dropout_rate}
)
if i % 100 == 0:
test_acc = mnist_network.accuracy.eval(
feed_dict={mnist_network.images: mnist.test.images,
mnist_network.labels: mnist.test.labels,
mnist_network.keep_prob: 1.0})
nni.report_intermediate_result(test_acc)
logger.debug('test accuracy %g', test_acc)
logger.debug('Pipe send intermediate result done.')
test_acc = mnist_network.accuracy.eval(
def __init__(self, channel_1_num, channel_2_num, conv_size, hidden_size,
pool_size, learning_rate, x_dim=784, y_dim=10):
self.channel_1_num = channel_1_num
self.channel_2_num = channel_2_num
self.conv_size = nni.choice(2, 3, 5, 7, name='self.conv_size')
self.hidden_size = nni.choice(124, 512, 1024, name='self.hidden_size')
self.pool_size = pool_size
self.learning_rate = nni.uniform(0.0001, 0.1, name='self.learning_rate'
)
self.x_dim = x_dim
self.y_dim = y_dim
self.images = tf.placeholder(tf.float32, [None, self.x_dim], name=
'input_x')
self.labels = tf.placeholder(tf.float32, [None, self.y_dim], name=
'input_y')
self.keep_prob = tf.placeholder(tf.float32, name='keep_prob')
self.train_step = None
self.accuracy = None
print('Mnist download data done.')
logger.debug('Mnist download data done.')
mnist_network = MnistNetwork(channel_1_num=params['channel_1_num'],
channel_2_num=params['channel_2_num'], conv_size=params['conv_size'
], hidden_size=params['hidden_size'], pool_size=params['pool_size'],
learning_rate=params['learning_rate'])
mnist_network.build_network()
logger.debug('Mnist build network done.')
graph_location = tempfile.mkdtemp()
logger.debug('Saving graph to: %s', graph_location)
train_writer = tf.summary.FileWriter(graph_location)
train_writer.add_graph(tf.get_default_graph())
test_acc = 0.0
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
batch_num = nni.choice(50, 250, 500, name='batch_num')
for i in range(batch_num):
batch = mnist.train.next_batch(batch_num)
dropout_rate = nni.choice(1, 5, name='dropout_rate')
mnist_network.train_step.run(feed_dict={mnist_network.images:
batch[0], mnist_network.labels: batch[1], mnist_network.
keep_prob: dropout_rate})
if i % 100 == 0:
test_acc = mnist_network.accuracy.eval(feed_dict={
mnist_network.images: mnist.test.images, mnist_network.
labels: mnist.test.labels, mnist_network.keep_prob: 1.0})
nni.report_intermediate_result(test_acc)
logger.debug('test accuracy %g', test_acc)
logger.debug('Pipe send intermediate result done.')
test_acc = mnist_network.accuracy.eval(feed_dict={mnist_network.
images: mnist.test.images, mnist_network.labels: mnist.test.
labels, mnist_network.keep_prob: 1.0})