Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def __build_model(self):
input_word = Input(shape=(self.max_len_word,))
x_word = Embedding(self.max_features, self.embedding_dims, input_length=self.max_len_word)(input_word)
x_word = Bidirectional(CuDNNLSTM(128, return_sequences=True))(x_word)
x_word = Attention()(x_word)
model_word = Model(input_word, x_word)
# Sentence part
input = Input(shape=(self.max_len_sentence, self.max_len_word))
x_sentence = TimeDistributed(model_word)(input)
x_sentence = Bidirectional(CuDNNLSTM(128, return_sequences=True))(x_sentence)
x_sentence = Attention()(x_sentence)
output = Dense(self.class_num, activation=self.last_activation)(x_sentence)
model = Model(inputs=input, outputs=output)
model.compile('adam', 'binary_crossentropy', metrics=['accuracy'])
return model
def __build_model(self):
input = Input(shape=(self.maxlen,))
output = Embedding(len(self.embedding_matrix),
self.embed_size,
weights=[self.embedding_matrix],
trainable=False)(input)
output = Bidirectional(LSTM(150, return_sequences=True, dropout=0.25, recurrent_dropout=0.25))(output)
output = Attention()(output)
output = Dense(128, activation="relu")(output)
output = Dropout(0.25)(output)
output = Dense(1, activation="sigmoid")(output)
model = Model(inputs=input, outputs=output)
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
return model
def build_model(self):
inputs = Input(shape=(self.maxlen,))
output = Embedding(len(self.embeddings),
300,
weights=[self.embeddings],
trainable=False)(inputs)
output = Bidirectional(LSTM(150, return_sequences=True, dropout=0.25, recurrent_dropout=0.25))(output)
output = Attention()(output)
output = Dense(128, activation="relu")(output)
output = Dropout(0.25)(output)
output = Dense(1, activation="sigmoid")(output)
model = Model(inputs=inputs, outputs=output)
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
return model
def __build_model(self):
input_word = Input(shape=(self.max_len_word,))
x_word = Embedding(self.max_features, self.embedding_dims, input_length=self.max_len_word)(input_word)
x_word = Bidirectional(CuDNNLSTM(128, return_sequences=True))(x_word)
x_word = Attention()(x_word)
model_word = Model(input_word, x_word)
# Sentence part
input = Input(shape=(self.max_len_sentence, self.max_len_word))
x_sentence = TimeDistributed(model_word)(input)
x_sentence = Bidirectional(CuDNNLSTM(128, return_sequences=True))(x_sentence)
x_sentence = Attention()(x_sentence)
output = Dense(self.class_num, activation=self.last_activation)(x_sentence)
model = Model(inputs=input, outputs=output)
model.compile('adam', 'binary_crossentropy', metrics=['accuracy'])
return model