How to use neuraxle - 10 common examples

To help you get started, we’ve selected a few neuraxle examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Neuraxio / Neuraxle / testing / steps / test_for_each.py View on Github external
def test_fit_for_each_should_fit_all_steps_for_each_data_inputs_expected_outputs():
    tape = TapeCallbackFunction()
    p = Pipeline([
        ForEachDataInput(Pipeline([
            FitCallbackStep(tape.callback, ["1"]),
            FitCallbackStep(tape.callback, ["2"]),
        ]))
    ])
    data_inputs = [[0, 1], [1, 2]]
    expected_outputs = [[2, 3], [4, 5]]

    p = p.fit(data_inputs, expected_outputs)

    assert isinstance(p, Pipeline)
    assert tape.get_name_tape() == ["1", "2", "1", "2"]
    assert tape.data == [([0, 1], [2, 3]), ([0, 1], [2, 3]), ([1, 2], [4, 5]), ([1, 2], [4, 5])]
github Neuraxio / Neuraxle / testing / steps / test_choose_one_or_many_steps_of.py View on Github external
def choose_one_step_single_step_chosen_fit():
    a_callback = TapeCallbackFunction()
    b_callback = TapeCallbackFunction()
    c_callback = TapeCallbackFunction()
    d_callback = TapeCallbackFunction()

    return NeuraxleTestCase(
        pipeline=Pipeline([
            ChooseOneStepOf([
                ('a', FitTransformCallbackStep(a_callback, c_callback, transform_function=lambda di: di * 2)),
                ('b', FitTransformCallbackStep(b_callback, d_callback, transform_function=lambda di: di * 2))
            ]),
        ]),
        callbacks=[a_callback, c_callback, b_callback, d_callback],
        expected_callbacks_data=[
            [],
            (DATA_INPUTS, EXPECTED_OUTPUTS),
            [],
            []
        ],
        hyperparams={
            'ChooseOneOrManyStepsOf__choice': 'a'
        },
        expected_processed_outputs=np.array([0, 2, 4, 6, 8, 10, 12, 14, 16, 18])
    )
github Neuraxio / Neuraxle / testing / steps / test_choose_one_or_many_steps_of.py View on Github external
def choose_one_step_single_step_chosen_fit():
    a_callback = TapeCallbackFunction()
    b_callback = TapeCallbackFunction()
    c_callback = TapeCallbackFunction()
    d_callback = TapeCallbackFunction()

    return NeuraxleTestCase(
        pipeline=Pipeline([
            ChooseOneStepOf([
                ('a', FitTransformCallbackStep(a_callback, c_callback, transform_function=lambda di: di * 2)),
                ('b', FitTransformCallbackStep(b_callback, d_callback, transform_function=lambda di: di * 2))
            ]),
        ]),
        callbacks=[a_callback, c_callback, b_callback, d_callback],
        expected_callbacks_data=[
            [],
            (DATA_INPUTS, EXPECTED_OUTPUTS),
            [],
            []
        ],
        hyperparams={
            'ChooseOneOrManyStepsOf__choice': 'a'
        },
        expected_processed_outputs=np.array([0, 2, 4, 6, 8, 10, 12, 14, 16, 18])
    )
github Neuraxio / Neuraxle / testing / mocks / step_mocks.py View on Github external
class SomeTruncableStep(TruncableSteps):
    def __init__(self):
        TruncableSteps.__init__(self,
                                hyperparams=HYPERPARAMETERS,
                                hyperparams_space=HYPERPARAMETERS_SPACE,
                                steps_as_tuple=(SomeStepWithHyperparams(), SomeStepWithHyperparams())
                                )

    def transform(self, data_inputs):
        pass

    def fit(self, data_inputs, expected_outputs=None):
        pass


class SomeSplitStep(NonFittableMixin, BaseStep):
    def fit(self, data_inputs, expected_outputs=None) -> 'NonFittableMixin':
        pass

    def fit_transform(self, data_inputs, expected_outputs=None):
        pass

    def transform(self, data_inputs):
        pass
github Neuraxio / Neuraxle / testing / test_step_saving.py View on Github external
def test_resumable_pipeline_fit_should_save_all_fitted_pipeline_steps(tmpdir: LocalPath):
    p = ResumablePipeline([
        (SOME_STEP_1, MultiplyByN(multiply_by=2)),
        (PIPELINE_2, ResumablePipeline([
            (SOME_STEP_2, MultiplyByN(multiply_by=4)),
            (CHECKPOINT, DefaultCheckpoint()),
            (SOME_STEP_3, MultiplyByN(multiply_by=6))
        ]))
    ], cache_folder=tmpdir)
    p.name = ROOT

    p = p.fit(
        np.array(range(10)),
        np.array(range(10))
    )

    not_saved_paths = [create_some_step3_path(tmpdir)]
    saved_paths = [create_root_path(tmpdir), create_pipeline2_path(tmpdir), create_some_step1_path(tmpdir),
                   create_some_step2_path(tmpdir), create_some_checkpoint_path(tmpdir)]
github Neuraxio / Neuraxle / testing / metaopt / test_automl_sequential_wrapper.py View on Github external
def test_automl_sequential_wrapper(tmpdir):
    # Given
    data_inputs = np.array(range(100))
    expected_outputs = np.array(range(100, 200))

    hyperparameter_space = HyperparameterSpace({
        'multiplication_1__multiply_by': RandInt(1, 3),
        'multiplication_2__multiply_by': RandInt(1, 3),
        'multiplication_3__multiply_by': RandInt(1, 3),
    })

    pipeline = Pipeline([
        ('multiplication_1', MultiplyByN()),
        ('multiplication_2', MultiplyByN()),
        ('multiplication_3', MultiplyByN())
    ], cache_folder=tmpdir).set_hyperparams_space(hyperparameter_space)

    auto_ml = RandomSearch(pipeline, hyperparams_repository=HyperparamsJSONRepository(tmpdir), n_iter=100)

    # When
    auto_ml: AutoMLSequentialWrapper = auto_ml.fit(data_inputs, expected_outputs)
    best_model: Pipeline = auto_ml.get_best_model()
    predicted_outputs = best_model.transform(data_inputs)
github Neuraxio / Neuraxle / testing / test_step_saving.py View on Github external
def test_resumable_pipeline_fit_should_save_all_fitted_pipeline_steps(tmpdir: LocalPath):
    p = ResumablePipeline([
        (SOME_STEP_1, MultiplyByN(multiply_by=2)),
        (PIPELINE_2, ResumablePipeline([
            (SOME_STEP_2, MultiplyByN(multiply_by=4)),
            (CHECKPOINT, DefaultCheckpoint()),
            (SOME_STEP_3, MultiplyByN(multiply_by=6))
        ]))
    ], cache_folder=tmpdir)
    p.name = ROOT

    p = p.fit(
        np.array(range(10)),
        np.array(range(10))
    )

    not_saved_paths = [create_some_step3_path(tmpdir)]
    saved_paths = [create_root_path(tmpdir), create_pipeline2_path(tmpdir), create_some_step1_path(tmpdir),
                   create_some_step2_path(tmpdir), create_some_checkpoint_path(tmpdir)]
    for p in saved_paths:
        assert os.path.exists(p)
    for p in not_saved_paths:
github Neuraxio / Neuraxle / testing / test_pickle_checkpoint_step.py View on Github external
def test_when_hyperparams_and_saved_no_pipeline_should_not_load_checkpoint_pickle(tmpdir: LocalPath):
    # Given
    tape = TapeCallbackFunction()
    pickle_checkpoint_step = DefaultCheckpoint()

    # When
    pipeline_save = create_pipeline(
        tmpdir=tmpdir,
        pickle_checkpoint_step=Identity(),
        tape=TapeCallbackFunction(),
        hyperparameters=HyperparameterSamples({"a__learning_rate": 1}),
        different=True,
        save_pipeline=False
    )
    pipeline_save.fit_transform(data_inputs, expected_outputs)

    pipeline_load = create_pipeline(
        tmpdir=tmpdir,
        pickle_checkpoint_step=pickle_checkpoint_step,
        tape=tape,
        hyperparameters=HyperparameterSamples({"a__learning_rate": 1})
    )
    pipeline_load, actual_data_inputs = pipeline_load.fit_transform(data_inputs, expected_outputs)

    # Then
    actual_tape = tape.get_name_tape()
github Neuraxio / Neuraxle / testing / test_pickle_checkpoint_step.py View on Github external
def test_when_no_hyperparams_and_saved_same_pipeline_should_load_checkpoint_pickle(tmpdir: LocalPath):
    # Given
    tape = TapeCallbackFunction()

    # When
    pipeline_save = create_pipeline(
        tmpdir=tmpdir,
        pickle_checkpoint_step=DefaultCheckpoint(),
        tape=TapeCallbackFunction()
    )
    pipeline_save.fit_transform(data_inputs, expected_outputs)

    pipeline_load = create_pipeline(
        tmpdir=tmpdir,
        pickle_checkpoint_step=DefaultCheckpoint(),
        tape=tape
    )
    pipeline_load, actual_data_inputs = pipeline_load.fit_transform(data_inputs, expected_outputs)

    # Then
    actual_tape = tape.get_name_tape()
    assert np.array_equal(actual_data_inputs, data_inputs)
    assert actual_tape == EXPECTED_TAPE_AFTER_CHECKPOINT
github Neuraxio / Neuraxle / testing / steps / test_choose_one_or_many_steps_of.py View on Github external
def create_test_case_single_step_choosen():
    a_callback = TapeCallbackFunction()
    b_callback = TapeCallbackFunction()

    return NeuraxleTestCase(
        pipeline=Pipeline([
            ChooseOneOrManyStepsOf([
                ('a', TransformCallbackStep(a_callback, transform_function=lambda di: di * 2)),
                ('b', TransformCallbackStep(b_callback, transform_function=lambda di: di * 2))
            ]),
        ]),
        callbacks=[a_callback, b_callback],
        expected_callbacks_data=[
            DATA_INPUTS,
            []
        ],
        hyperparams={
            'ChooseOneOrManyStepsOf__a__enabled': True,
            'ChooseOneOrManyStepsOf__b__enabled': False