How to use the networkml.utils.training_utils.get_pcap_paths function in networkml

To help you get started, we’ve selected a few networkml examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github CyberReboot / NetworkML / networkml / algorithms / randomforest / RandomForest.py View on Github external
def test(self, data_dir, save_path):
        # Initialize results dictionary
        results = {}
        results['labels'] = self.conf_labels

        # Get the true label assignments
        self.logger.info('Getting label assignments')
        label_assignments = get_labels(
            'networkml/configs/label_assignments.json', model_labels=self.model.labels)
        if not label_assignments:
            self.logger.warn(
                'Could not read label assignments; continuing anyway.')

        # Walk through testing directory and get all the pcaps
        self.logger.info('Getting pcaps')
        pcaps = get_pcap_paths(data_dir)
        if not pcaps:
            self.logger.error(
                'No pcaps were found in data directory; exiting.')
            return

        # Evaluate the model on each pcap
        file_size = 0
        file_num = 0
        time_slices = 0
        self.logger.info('processing pcaps')
        tick = time.clock()
        for pcap in pcaps:
            # Get the true label
            name, label = get_true_label(pcap, label_assignments)
            single_result = {}
            single_result['label'] = label
github CyberReboot / NetworkML / networkml / algorithms / base.py View on Github external
# Initialize results dictionary
        results = {}
        results['labels'] = self.conf_labels

        # Get the true label assignments
        self.logger.info('Getting label assignments')
        label_assignments = get_labels(
            'networkml/configs/label_assignments.json', model_labels=self.model.labels)

        if not label_assignments:
            self.logger.warn(
                'Could not read label assignments; continuing anyway.')

        # Walk through testing directory and get all the pcaps
        self.logger.info('Getting pcaps')
        pcaps = get_pcap_paths(data_dir)
        if not pcaps:
            self.logger.error(
                'No pcaps were found in data directory; exiting.')
            return

        # Evaluate the model on each pcap
        file_size = 0
        file_num = 0
        time_slices = 0
        self.logger.info('processing pcaps')
        tick = time.clock()
        for pcap in pcaps:
            # Get the true label
            name, label = get_true_label(pcap, label_assignments)
            single_result = {}
            single_result['label'] = label