Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
find_neuron_params.find_params(savefile=neuron_params_file, show=False)
neuron_params = dict(np.load(neuron_params_file))
N = neuron_params.pop('N')
# neuron_params['radius'] = np.array([1,2])
# --- create the model
model = nengo.Network()
with model:
input_images = nengo.Node(output=get_image, label='images')
# --- make sigmoidal layers
layers = []
output = input_images
for w, b in zip(weights[:-1], biases[:-1]):
layer = nengo.networks.EnsembleArray(N, b.size, **neuron_params)
bias = nengo.Node(output=b)
nengo.Connection(bias, layer.input, synapse=0)
nengo.Connection(output, layer.input, transform=w.T, synapse=pstc)
output = layer.add_output('sigmoid', function=sigmoid)
layers.append(layer)
# --- make code layer
W, b = weights[-1], biases[-1]
code_layer = nengo.networks.EnsembleArray(10, b.size, label='code', radius=10)
code_bias = nengo.Node(output=b)
nengo.Connection(code_bias, code_layer.input, synapse=0)
nengo.Connection(output, code_layer.input, transform=W.T, synapse=pstc)
# --- make classifier layer