How to use nbresuse - 5 common examples

To help you get started, we’ve selected a few nbresuse examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github yuvipanda / nbresuse / nbresuse / __init__.py View on Github external
def load_jupyter_server_extension(nbapp):
    """
    Called during notebook start
    """
    api_url= url_path_join(nbapp.web_app.settings['base_url'], '/api/nbresuse/v1')
    nbapp.web_app.add_handlers('.*', [
        (api_url, MetricsHandler, {'nbapp': nbapp})
    ])
github yuvipanda / nbresuse / nbresuse / config.py View on Github external
"""
    Holds server-side configuration for nbresuse
    """

    process_memory_metrics = List(
        trait=PSUtilMetric(),
        default_value=[{"name": "memory_info", "attribute": "rss"}],
    )

    system_memory_metrics = List(
        trait=PSUtilMetric(),
        default_value=[{"name": "virtual_memory", "attribute": "total"}],
    )

    process_cpu_metrics = List(
        trait=PSUtilMetric(),
        default_value=[{"name": "cpu_percent", "kwargs": {"interval": 0.05}}],
    )

    system_cpu_metrics = List(
        trait=PSUtilMetric(), default_value=[{"name": "cpu_count"}]
    )

    mem_warning_threshold = Float(
        default_value=0.1,
        help="""
        Warn user with flashing lights when memory usage is within this fraction
        memory limit.

        For example, if memory limit is 128MB, `mem_warning_threshold` is 0.1,
        we will start warning the user when they use (128 - (128 * 0.1)) MB.
github yuvipanda / nbresuse / nbresuse / __init__.py View on Github external
import os
import json
from notebook.utils import url_path_join
from notebook.base.handlers import IPythonHandler
from tornado import web, iostream
import asyncio
import pluggy
from nbresuse import hooks, default_resources
from collections import ChainMap


plugin_manager = pluggy.PluginManager('nbresuse')
plugin_manager.add_hookspecs(hooks)
# Register the resources nbresuse provides by default
plugin_manager.register(default_resources)


class MetricsHandler(IPythonHandler):
    def initialize(self, nbapp):
        self.set_header('content-type', 'text/event-stream')
        self.set_header('cache-control', 'no-cache')
        self.nbapp = nbapp

    @web.authenticated
    async def get(self):
        """
        Calculate and return current resource usage metrics
        """
        while True:
            metrics = {}
            for metric_response in plugin_manager.hook.nbresuse_add_resource(nbapp=self.nbapp):
github yuvipanda / nbresuse / nbresuse / handlers.py View on Github external
def setup_handlers(web_app):
    route_pattern = url_path_join(web_app.settings['base_url'], '/metrics')
    web_app.add_handlers('.*', [(route_pattern, MetricsHandler)])
github yuvipanda / nbresuse / nbresuse / __init__.py View on Github external
import os
import json
from notebook.utils import url_path_join
from notebook.base.handlers import IPythonHandler
from tornado import web, iostream
import asyncio
import pluggy
from nbresuse import hooks, default_resources
from collections import ChainMap


plugin_manager = pluggy.PluginManager('nbresuse')
plugin_manager.add_hookspecs(hooks)
# Register the resources nbresuse provides by default
plugin_manager.register(default_resources)


class MetricsHandler(IPythonHandler):
    def initialize(self, nbapp):
        self.set_header('content-type', 'text/event-stream')
        self.set_header('cache-control', 'no-cache')
        self.nbapp = nbapp

    @web.authenticated
    async def get(self):
        """
        Calculate and return current resource usage metrics
        """
        while True:

nbresuse

Simple Jupyter extension to show how much resources (RAM) your notebook is using

BSD-2-Clause
Latest version published 4 years ago

Package Health Score

58 / 100
Full package analysis

Similar packages