How to use the ms2pip.cython_modules.ms2pip_pyx function in ms2pip

To help you get started, we’ve selected a few ms2pip examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github compomics / ms2pip_c / ms2pip / ms2pipC.py View on Github external
def process_peptides(worker_num, data, afile, modfile, modfile2, PTMmap, model):
    """
	Function for each worker to process a list of peptides. The models are
	chosen based on model. PTMmap, Ntermmap and Ctermmap determine the
	modifications applied to each peptide sequence. Returns the predicted
	spectra for all the peptides.
	"""

    ms2pip_pyx.ms2pip_init(
        bytearray(afile.encode()),
        bytearray(modfile.encode()),
        bytearray(modfile2.encode()),
    )

    pcount = 0

    # Prepare output variables
    mz_buf = []
    prediction_buf = []
    peplen_buf = []
    charge_buf = []
    pepid_buf = []

    # transform pandas dataframe into dictionary for easy access
    if "ce" in data.columns:
github compomics / ms2pip_c / ms2pip / ms2pipC.py View on Github external
)
                    )
                else:
                    # Predict the b- and y-ion intensities from the peptide
                    pepid_buf.append(title)
                    peplen_buf.append(len(peptide) - 2)
                    charge_buf.append(charge)

                    # get/append ion mzs, targets and predictions
                    targets = ms2pip_pyx.get_targets(
                        modpeptide, msms, peaks, float(fragerror), peaks_version
                    )
                    target_buf.append([np.array(t, dtype=np.float32) for t in targets])
                    mzs = ms2pip_pyx.get_mzs(modpeptide, peaks_version)
                    mz_buf.append([np.array(m, dtype=np.float32) for m in mzs])
                    predictions = ms2pip_pyx.get_predictions(
                        peptide, modpeptide, charge, model_id, peaks_version, colen
                    )  # SD: added colen
                    prediction_buf.append(
                        [np.array(p, dtype=np.float32) for p in predictions]
                    )

                pcount += 1
                if (pcount % 500) == 0:
                    sys.stdout.write("(%i)%i " % (worker_num, pcount))
                    sys.stdout.flush()

    f.close()
    if tableau:
        ft.close()
        ft2.close()