How to use the mriqc.config.loggers.interface.info function in mriqc

To help you get started, we’ve selected a few mriqc examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github poldracklab / mriqc / mriqc / classifier / data.py View on Github external
x_df = pd.merge(x_df, y_df, on=bids_comps_x, how="left")

    if merged_name is not None:
        x_df.to_csv(merged_name, index=False)

    # Drop samples with invalid rating
    nan_labels = x_df[x_df[rate_label].isnull()].index.ravel().tolist()
    if nan_labels:
        config.loggers.interface.info(
            f"Dropping {len(nan_labels)} samples for having non-numerical labels,"
        )
        x_df = x_df.drop(nan_labels)

    # Print out some info
    nsamples = len(x_df)
    config.loggers.interface.info(
        f'Created dataset X="{feat_file}", Y="{label_file}" (N={nsamples} valid samples)'
    )

    # Inform about ratings distribution
    labels = sorted(list(set(x_df[rate_label].values.ravel().tolist())))
    ldist = []
    for l in labels:
        ldist.append(int(np.sum(x_df[rate_label] == l)))

    config.loggers.interface.info(
        "Ratings distribution: %s (%s, %s)",
        "/".join(["%d" % x for x in ldist]),
        "/".join(["%.2f%%" % (100 * x / nsamples) for x in ldist]),
        "accept/exclude" if len(ldist) == 2 else "exclude/doubtful/accept",
    )
github poldracklab / mriqc / mriqc / classifier / data.py View on Github external
def zscore_dataset(dataframe, excl_columns=None, by="site", njobs=-1):
    """ Returns a dataset zscored by the column given as argument """
    from multiprocessing import Pool, cpu_count

    config.loggers.interface.info("z-scoring dataset ...")

    if njobs <= 0:
        njobs = cpu_count()

    sites = list(set(dataframe[[by]].values.ravel().tolist()))
    columns = list(dataframe.select_dtypes([np.number]).columns.ravel())

    if excl_columns is None:
        excl_columns = []

    for col in columns:
        if not np.isfinite(np.sum(dataframe[[col]].values.ravel())):
            excl_columns.append(col)

    if excl_columns:
        for col in excl_columns:
github poldracklab / mriqc / mriqc / interfaces / webapi.py View on Github external
port=port,
            email=email,
        )

        try:
            self._results["api_id"] = response.json()["_id"]
        except (AttributeError, KeyError, ValueError):
            # response did not give us an ID
            errmsg = (
                "QC metrics upload failed to create an ID for the record "
                "uplOADED. rEsponse from server follows: {}".format(response.text)
            )
            config.loggers.interface.warning(errmsg)

        if response.status_code == 201:
            config.loggers.interface.info("QC metrics successfully uploaded.")
            return runtime

        errmsg = "QC metrics failed to upload. Status %d: %s" % (
            response.status_code,
            response.text,
        )
        config.loggers.interface.warning(errmsg)
        if self.inputs.strict:
            raise RuntimeError(response.text)

        return runtime