Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
if idf.opt['outputAs'] == 'html':
#TODO: show legend properly (see mpld3 bug #274)
#leg = fig.legend(handles, labels, loc='upper right', fancybox=True, fontsize=10, title='')
leg = axes[0].legend(handles, labels, loc='upper right', fancybox=True, fontsize=10, title='', prop={'size': 8})
else:
leg = plt.figlegend(handles, labels, loc='upper right', fancybox=True,
fontsize=font_size, title='', prop={'size': font_size-3})
leg.draggable()
fig.subplots_adjust(hspace=2)
fig.set_tight_layout(True)
if idf.opt['outputAs'] == 'html':
plugins.clear(fig)
plugins.connect(fig, plugins.Reset(), plugins.BoxZoom(), plugins.Zoom(enabled=False),
plugins.MousePosition(fontsize=14, fmt=".5g"))
figures.append(mpld3.fig_to_html(fig))
elif idf.opt['outputAs'] == 'interactive':
plt.show(block=False)
elif idf.opt['outputAs'] == 'pdf':
pp.savefig(plt.gcf())
elif idf.opt['outputAs'] == 'tikz':
from matplotlib2tikz import save as tikz_save
tikz_save('{}_{}_{}.tex'.format(filename,
group['dataset'][0]['title'].replace('_','-'), ds // idf.model.num_dofs),
figureheight = '\\figureheight', figurewidth = '\\figurewidth', show_info=False)
if idf.opt['outputAs'] == 'html':
path = os.path.dirname(os.path.abspath(__file__))
template_environment = Environment(autoescape=False,
loader=FileSystemLoader(os.path.join(path, '../output')),
trim_blocks=False)
if show_diagonal:
plt.plot([0.0, 1.0], [1.0, 0.0], 'k-', ls="--", lw=2, alpha=0.5, color='green') # http://matplotlib.org/api/lines_api.html
plt.plot([0.0, 0.7], [0.7, 0.0], 'k-', ls="--", lw=1, alpha=0.7, color='orange') # http://matplotlib.org/api/lines_api.html
plt.plot([0.3, 1.0], [1.0, 0.3], 'k-', ls="--", lw=1, alpha=0.7, color='orange') # http://matplotlib.org/api/lines_api.html
plt.plot([0.0, 0.4], [0.4, 0.0], 'k-', ls="--", lw=1, alpha=0.9, color='red') # http://matplotlib.org/api/lines_api.html
plt.plot([0.6, 1.0], [1.0, 0.6], 'k-', ls="--", lw=1, alpha=0.9, color='red') # http://matplotlib.org/api/lines_api.html
scatter = ax.scatter(x_values, y_values, ball_values, alpha=0.5, c=color_values)
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.title("%i %s items. Circles: %s & %s" % (len(x_values), scope_name, ball_label, color_label))
tooltip = mpld3.plugins.PointHTMLTooltip(scatter, labels=annotations, hoffset=10, voffset=-25)
mpld3.plugins.connect(fig, tooltip)
mpld3.plugins.connect(fig, mpld3.plugins.MousePosition(fmt=".2f"))
mpld3.plugins.connect(fig, ClickSendToBack(scatter))
filename = "%s-scatter-%s-%s_%s_%s.html" % (filename_prefix, scope_name, x_label, y_label, ball_label)
_save_figure_as_html(fig, filename)
return filename
x = np.linspace(-2, 2, 20)
y = x[:, None]
X = np.zeros((20, 20, 4))
X[:, :, 0] = np.exp(- (x - 1) ** 2 - (y) ** 2)
X[:, :, 1] = np.exp(- (x + 0.71) ** 2 - (y - 0.71) ** 2)
X[:, :, 2] = np.exp(- (x + 0.71) ** 2 - (y + 0.71) ** 2)
X[:, :, 3] = np.exp(-0.25 * (x ** 2 + y ** 2))
im = ax.imshow(X, extent=(10, 20, 10, 20),
origin='lower', zorder=1, interpolation='nearest')
fig.colorbar(im, ax=ax)
ax.set_title('An Image', size=20)
plugins.connect(fig, plugins.MousePosition(fontsize=14))
# mpld3.show()
mpld3.save_html(fig, "test.html")
td_dist : d[length][percentile] -> critical value
TD distribution.
gc_perc : float
GC percentile value to mark on plot.
td_perc : float
TD percentile value to mark on plot.
cov_perc : float
Mean percent deviation to mark on plot.
"""
# Set size of figure
self.fig.clear()
mpld3.plugins.clear(self.fig)
mpld3.plugins.connect(self.fig, mpld3.plugins.Reset(), mpld3.plugins.BoxZoom(), mpld3.plugins.Zoom())
mpld3.plugins.connect(self.fig, mpld3.plugins.MousePosition(fontsize=12, fmt='.1f'))
self.fig.set_size_inches(self.options.width, self.options.height)
# create subplots depending on availability of coverage information
if len(genome_stats.mean_coverage) >= 1:
# note: the ordering here is specific and ensures
# proper linked brushing
axes_gc_dist = self.fig.add_subplot(241)
axes_tetra_dist = self.fig.add_subplot(242)
axes_coverage_dist = self.fig.add_subplot(243)
axes_td_cov = self.fig.add_subplot(246)
axes_pc1_cov = self.fig.add_subplot(247)
axes_tetra_pc1_pc3 = self.fig.add_subplot(248)
axes_gc_coverage = self.fig.add_subplot(245)
axes_tetra_pc1_pc2 = self.fig.add_subplot(244)
else:
Parameters
----------
genome_scaffold_stats : d[scaffold_id] -> namedtuple of scaffold stats
Statistics for scaffolds in genome.
highlight_scaffold_ids : d[scaffold_id] -> color
Scaffolds in genome to highlight.
link_scaffold_ids : list of scaffold pairs
Pairs of scaffolds to link together.
"""
# Set size of figure
self.fig.clear()
mpld3.plugins.clear(self.fig)
mpld3.plugins.connect(self.fig, mpld3.plugins.Reset(), mpld3.plugins.BoxZoom(), mpld3.plugins.Zoom())
mpld3.plugins.connect(self.fig, mpld3.plugins.MousePosition(fontsize=12, fmt='.1f'))
self.fig.set_size_inches(self.options.width, self.options.height)
axis_pc1_pc2 = self.fig.add_subplot(221)
axis_pc3_pc2 = self.fig.add_subplot(222)
axis_pc1_pc3 = self.fig.add_subplot(223)
axis_variance = self.fig.add_subplot(224)
scatter, _, _, _ = self.plot_on_axes(self.fig, 0, 1,
genome_scaffold_stats,
highlight_scaffold_ids,
link_scaffold_ids,
axis_pc1_pc2, True)
self.plot_on_axes(self.fig, 2, 1,
genome_scaffold_stats,
highlight_scaffold_ids : d[scaffold_id] -> color
Scaffolds in genome to highlight.
link_scaffold_ids : list of scaffold pairs
Pairs of scaffolds to link together.
mean_gc : float
Mean GC of genome.
mean_coverage : list of float
Mean coverage profile of genome.
"""
# Set size of figure
self.fig.clear()
mpld3.plugins.clear(self.fig)
mpld3.plugins.connect(self.fig, mpld3.plugins.Reset(), mpld3.plugins.BoxZoom(), mpld3.plugins.Zoom())
mpld3.plugins.connect(self.fig, mpld3.plugins.MousePosition(fontsize=12, fmt='.1f'))
self.fig.set_size_inches(self.options.width, self.options.height)
axis = self.fig.add_subplot(111)
scatter, _, _, _ = self.plot_on_axes(self.fig, genome_scaffold_stats,
highlight_scaffold_ids, link_scaffold_ids,
mean_gc, mean_coverage,
axis, True)
mpld3.plugins.connect(self.fig, LinkedBrush(scatter))
self.fig.tight_layout(pad=1, w_pad=1)
self.draw()
link_scaffold_ids : list of scaffold pairs
Pairs of scaffolds to link together.
mean_signature : float
Mean tetranucleotide signature of genome.
td_dist : d[length][percentile] -> critical value
TD distribution.
percentiles_to_plot : iterable
Percentile values to mark on plot.
"""
# Set size of figure
self.fig.clear()
mpld3.plugins.clear(self.fig)
mpld3.plugins.connect(self.fig, mpld3.plugins.Reset(), mpld3.plugins.BoxZoom(), mpld3.plugins.Zoom())
mpld3.plugins.connect(self.fig, mpld3.plugins.MousePosition(fontsize=12, fmt='.1f'))
self.fig.set_size_inches(self.options.width, self.options.height)
axes_hist = self.fig.add_subplot(121)
axes_scatter = self.fig.add_subplot(122)
self.plot_on_axes(self.fig,
genome_scaffold_stats,
highlight_scaffold_ids,
link_scaffold_ids,
mean_signature, td_dist, percentiles_to_plot,
axes_hist, axes_scatter, True)
self.fig.tight_layout(pad=1, w_pad=1)
self.draw()
def trigger_timeseries_plot(file_list, ifos, start, end):
fig = pylab.figure()
for ifo in ifos:
trigs = columns_from_file_list(file_list,
['snr', 'end_time'],
ifo, start, end)
print(trigs)
pylab.scatter(trigs['end_time'], trigs['snr'], label=ifo,
color=ifo_color[ifo])
fmt = '.12g'
mpld3.plugins.connect(fig, mpld3.plugins.MousePosition(fmt=fmt))
pylab.legend()
pylab.xlabel('Time (s)')
pylab.ylabel('SNR')
pylab.grid()
return mpld3.fig_to_html(fig)