Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
prod = MapReduceFunction.register(pandas.DataFrame.prod, pandas.DataFrame.prod)
any = MapReduceFunction.register(pandas.DataFrame.any, pandas.DataFrame.any)
all = MapReduceFunction.register(pandas.DataFrame.all, pandas.DataFrame.all)
memory_usage = MapReduceFunction.register(
pandas.DataFrame.memory_usage,
lambda x, *args, **kwargs: pandas.DataFrame.sum(x),
axis=0,
)
# END MapReduce operations
# Reduction operations
idxmax = ReductionFunction.register(pandas.DataFrame.idxmax)
idxmin = ReductionFunction.register(pandas.DataFrame.idxmin)
median = ReductionFunction.register(pandas.DataFrame.median)
nunique = ReductionFunction.register(pandas.DataFrame.nunique)
skew = ReductionFunction.register(pandas.DataFrame.skew)
std = ReductionFunction.register(pandas.DataFrame.std)
var = ReductionFunction.register(pandas.DataFrame.var)
sum_min_count = ReductionFunction.register(pandas.DataFrame.sum)
prod_min_count = ReductionFunction.register(pandas.DataFrame.prod)
mean = ReductionFunction.register(pandas.DataFrame.mean)
quantile_for_single_value = ReductionFunction.register(pandas.DataFrame.quantile)
# END Reduction operations
# Map partitions operations
# These operations are operations that apply a function to every partition.
abs = MapFunction.register(pandas.DataFrame.abs, dtypes="copy")
applymap = MapFunction.register(pandas.DataFrame.applymap)
invert = MapFunction.register(pandas.DataFrame.__invert__)
isin = MapFunction.register(pandas.DataFrame.isin, dtypes=np.bool)
all = MapReduceFunction.register(pandas.DataFrame.all, pandas.DataFrame.all)
memory_usage = MapReduceFunction.register(
pandas.DataFrame.memory_usage,
lambda x, *args, **kwargs: pandas.DataFrame.sum(x),
axis=0,
)
# END MapReduce operations
# Reduction operations
idxmax = ReductionFunction.register(pandas.DataFrame.idxmax)
idxmin = ReductionFunction.register(pandas.DataFrame.idxmin)
median = ReductionFunction.register(pandas.DataFrame.median)
nunique = ReductionFunction.register(pandas.DataFrame.nunique)
skew = ReductionFunction.register(pandas.DataFrame.skew)
std = ReductionFunction.register(pandas.DataFrame.std)
var = ReductionFunction.register(pandas.DataFrame.var)
sum_min_count = ReductionFunction.register(pandas.DataFrame.sum)
prod_min_count = ReductionFunction.register(pandas.DataFrame.prod)
mean = ReductionFunction.register(pandas.DataFrame.mean)
quantile_for_single_value = ReductionFunction.register(pandas.DataFrame.quantile)
# END Reduction operations
# Map partitions operations
# These operations are operations that apply a function to every partition.
abs = MapFunction.register(pandas.DataFrame.abs, dtypes="copy")
applymap = MapFunction.register(pandas.DataFrame.applymap)
invert = MapFunction.register(pandas.DataFrame.__invert__)
isin = MapFunction.register(pandas.DataFrame.isin, dtypes=np.bool)
isna = MapFunction.register(pandas.DataFrame.isna, dtypes=np.bool)
negative = MapFunction.register(pandas.DataFrame.__neg__)
lambda x, *args, **kwargs: pandas.DataFrame.sum(x),
axis=0,
)
# END MapReduce operations
# Reduction operations
idxmax = ReductionFunction.register(pandas.DataFrame.idxmax)
idxmin = ReductionFunction.register(pandas.DataFrame.idxmin)
median = ReductionFunction.register(pandas.DataFrame.median)
nunique = ReductionFunction.register(pandas.DataFrame.nunique)
skew = ReductionFunction.register(pandas.DataFrame.skew)
std = ReductionFunction.register(pandas.DataFrame.std)
var = ReductionFunction.register(pandas.DataFrame.var)
sum_min_count = ReductionFunction.register(pandas.DataFrame.sum)
prod_min_count = ReductionFunction.register(pandas.DataFrame.prod)
mean = ReductionFunction.register(pandas.DataFrame.mean)
quantile_for_single_value = ReductionFunction.register(pandas.DataFrame.quantile)
# END Reduction operations
# Map partitions operations
# These operations are operations that apply a function to every partition.
abs = MapFunction.register(pandas.DataFrame.abs, dtypes="copy")
applymap = MapFunction.register(pandas.DataFrame.applymap)
invert = MapFunction.register(pandas.DataFrame.__invert__)
isin = MapFunction.register(pandas.DataFrame.isin, dtypes=np.bool)
isna = MapFunction.register(pandas.DataFrame.isna, dtypes=np.bool)
negative = MapFunction.register(pandas.DataFrame.__neg__)
notna = MapFunction.register(pandas.DataFrame.notna, dtypes=np.bool)
round = MapFunction.register(pandas.DataFrame.round)
sum = MapReduceFunction.register(pandas.DataFrame.sum, pandas.DataFrame.sum)
prod = MapReduceFunction.register(pandas.DataFrame.prod, pandas.DataFrame.prod)
any = MapReduceFunction.register(pandas.DataFrame.any, pandas.DataFrame.any)
all = MapReduceFunction.register(pandas.DataFrame.all, pandas.DataFrame.all)
memory_usage = MapReduceFunction.register(
pandas.DataFrame.memory_usage,
lambda x, *args, **kwargs: pandas.DataFrame.sum(x),
axis=0,
)
# END MapReduce operations
# Reduction operations
idxmax = ReductionFunction.register(pandas.DataFrame.idxmax)
idxmin = ReductionFunction.register(pandas.DataFrame.idxmin)
median = ReductionFunction.register(pandas.DataFrame.median)
nunique = ReductionFunction.register(pandas.DataFrame.nunique)
skew = ReductionFunction.register(pandas.DataFrame.skew)
std = ReductionFunction.register(pandas.DataFrame.std)
var = ReductionFunction.register(pandas.DataFrame.var)
sum_min_count = ReductionFunction.register(pandas.DataFrame.sum)
prod_min_count = ReductionFunction.register(pandas.DataFrame.prod)
mean = ReductionFunction.register(pandas.DataFrame.mean)
quantile_for_single_value = ReductionFunction.register(pandas.DataFrame.quantile)
# END Reduction operations
# Map partitions operations
# These operations are operations that apply a function to every partition.
abs = MapFunction.register(pandas.DataFrame.abs, dtypes="copy")
applymap = MapFunction.register(pandas.DataFrame.applymap)
invert = MapFunction.register(pandas.DataFrame.__invert__)
)
# END MapReduce operations
# Reduction operations
idxmax = ReductionFunction.register(pandas.DataFrame.idxmax)
idxmin = ReductionFunction.register(pandas.DataFrame.idxmin)
median = ReductionFunction.register(pandas.DataFrame.median)
nunique = ReductionFunction.register(pandas.DataFrame.nunique)
skew = ReductionFunction.register(pandas.DataFrame.skew)
std = ReductionFunction.register(pandas.DataFrame.std)
var = ReductionFunction.register(pandas.DataFrame.var)
sum_min_count = ReductionFunction.register(pandas.DataFrame.sum)
prod_min_count = ReductionFunction.register(pandas.DataFrame.prod)
mean = ReductionFunction.register(pandas.DataFrame.mean)
quantile_for_single_value = ReductionFunction.register(pandas.DataFrame.quantile)
# END Reduction operations
# Map partitions operations
# These operations are operations that apply a function to every partition.
abs = MapFunction.register(pandas.DataFrame.abs, dtypes="copy")
applymap = MapFunction.register(pandas.DataFrame.applymap)
invert = MapFunction.register(pandas.DataFrame.__invert__)
isin = MapFunction.register(pandas.DataFrame.isin, dtypes=np.bool)
isna = MapFunction.register(pandas.DataFrame.isna, dtypes=np.bool)
negative = MapFunction.register(pandas.DataFrame.__neg__)
notna = MapFunction.register(pandas.DataFrame.notna, dtypes=np.bool)
round = MapFunction.register(pandas.DataFrame.round)
# END Map partitions operations
any = MapReduceFunction.register(pandas.DataFrame.any, pandas.DataFrame.any)
all = MapReduceFunction.register(pandas.DataFrame.all, pandas.DataFrame.all)
memory_usage = MapReduceFunction.register(
pandas.DataFrame.memory_usage,
lambda x, *args, **kwargs: pandas.DataFrame.sum(x),
axis=0,
)
# END MapReduce operations
# Reduction operations
idxmax = ReductionFunction.register(pandas.DataFrame.idxmax)
idxmin = ReductionFunction.register(pandas.DataFrame.idxmin)
median = ReductionFunction.register(pandas.DataFrame.median)
nunique = ReductionFunction.register(pandas.DataFrame.nunique)
skew = ReductionFunction.register(pandas.DataFrame.skew)
std = ReductionFunction.register(pandas.DataFrame.std)
var = ReductionFunction.register(pandas.DataFrame.var)
sum_min_count = ReductionFunction.register(pandas.DataFrame.sum)
prod_min_count = ReductionFunction.register(pandas.DataFrame.prod)
mean = ReductionFunction.register(pandas.DataFrame.mean)
quantile_for_single_value = ReductionFunction.register(pandas.DataFrame.quantile)
# END Reduction operations
# Map partitions operations
# These operations are operations that apply a function to every partition.
abs = MapFunction.register(pandas.DataFrame.abs, dtypes="copy")
applymap = MapFunction.register(pandas.DataFrame.applymap)
invert = MapFunction.register(pandas.DataFrame.__invert__)
isin = MapFunction.register(pandas.DataFrame.isin, dtypes=np.bool)
isna = MapFunction.register(pandas.DataFrame.isna, dtypes=np.bool)
memory_usage = MapReduceFunction.register(
pandas.DataFrame.memory_usage,
lambda x, *args, **kwargs: pandas.DataFrame.sum(x),
axis=0,
)
# END MapReduce operations
# Reduction operations
idxmax = ReductionFunction.register(pandas.DataFrame.idxmax)
idxmin = ReductionFunction.register(pandas.DataFrame.idxmin)
median = ReductionFunction.register(pandas.DataFrame.median)
nunique = ReductionFunction.register(pandas.DataFrame.nunique)
skew = ReductionFunction.register(pandas.DataFrame.skew)
std = ReductionFunction.register(pandas.DataFrame.std)
var = ReductionFunction.register(pandas.DataFrame.var)
sum_min_count = ReductionFunction.register(pandas.DataFrame.sum)
prod_min_count = ReductionFunction.register(pandas.DataFrame.prod)
mean = ReductionFunction.register(pandas.DataFrame.mean)
quantile_for_single_value = ReductionFunction.register(pandas.DataFrame.quantile)
# END Reduction operations
# Map partitions operations
# These operations are operations that apply a function to every partition.
abs = MapFunction.register(pandas.DataFrame.abs, dtypes="copy")
applymap = MapFunction.register(pandas.DataFrame.applymap)
invert = MapFunction.register(pandas.DataFrame.__invert__)
isin = MapFunction.register(pandas.DataFrame.isin, dtypes=np.bool)
isna = MapFunction.register(pandas.DataFrame.isna, dtypes=np.bool)
negative = MapFunction.register(pandas.DataFrame.__neg__)
notna = MapFunction.register(pandas.DataFrame.notna, dtypes=np.bool)
min = MapReduceFunction.register(pandas.DataFrame.min, pandas.DataFrame.min)
sum = MapReduceFunction.register(pandas.DataFrame.sum, pandas.DataFrame.sum)
prod = MapReduceFunction.register(pandas.DataFrame.prod, pandas.DataFrame.prod)
any = MapReduceFunction.register(pandas.DataFrame.any, pandas.DataFrame.any)
all = MapReduceFunction.register(pandas.DataFrame.all, pandas.DataFrame.all)
memory_usage = MapReduceFunction.register(
pandas.DataFrame.memory_usage,
lambda x, *args, **kwargs: pandas.DataFrame.sum(x),
axis=0,
)
# END MapReduce operations
# Reduction operations
idxmax = ReductionFunction.register(pandas.DataFrame.idxmax)
idxmin = ReductionFunction.register(pandas.DataFrame.idxmin)
median = ReductionFunction.register(pandas.DataFrame.median)
nunique = ReductionFunction.register(pandas.DataFrame.nunique)
skew = ReductionFunction.register(pandas.DataFrame.skew)
std = ReductionFunction.register(pandas.DataFrame.std)
var = ReductionFunction.register(pandas.DataFrame.var)
sum_min_count = ReductionFunction.register(pandas.DataFrame.sum)
prod_min_count = ReductionFunction.register(pandas.DataFrame.prod)
mean = ReductionFunction.register(pandas.DataFrame.mean)
quantile_for_single_value = ReductionFunction.register(pandas.DataFrame.quantile)
# END Reduction operations
# Map partitions operations
# These operations are operations that apply a function to every partition.
abs = MapFunction.register(pandas.DataFrame.abs, dtypes="copy")
applymap = MapFunction.register(pandas.DataFrame.applymap)
pandas.DataFrame.memory_usage,
lambda x, *args, **kwargs: pandas.DataFrame.sum(x),
axis=0,
)
# END MapReduce operations
# Reduction operations
idxmax = ReductionFunction.register(pandas.DataFrame.idxmax)
idxmin = ReductionFunction.register(pandas.DataFrame.idxmin)
median = ReductionFunction.register(pandas.DataFrame.median)
nunique = ReductionFunction.register(pandas.DataFrame.nunique)
skew = ReductionFunction.register(pandas.DataFrame.skew)
std = ReductionFunction.register(pandas.DataFrame.std)
var = ReductionFunction.register(pandas.DataFrame.var)
sum_min_count = ReductionFunction.register(pandas.DataFrame.sum)
prod_min_count = ReductionFunction.register(pandas.DataFrame.prod)
mean = ReductionFunction.register(pandas.DataFrame.mean)
quantile_for_single_value = ReductionFunction.register(pandas.DataFrame.quantile)
# END Reduction operations
# Map partitions operations
# These operations are operations that apply a function to every partition.
abs = MapFunction.register(pandas.DataFrame.abs, dtypes="copy")
applymap = MapFunction.register(pandas.DataFrame.applymap)
invert = MapFunction.register(pandas.DataFrame.__invert__)
isin = MapFunction.register(pandas.DataFrame.isin, dtypes=np.bool)
isna = MapFunction.register(pandas.DataFrame.isna, dtypes=np.bool)
negative = MapFunction.register(pandas.DataFrame.__neg__)
notna = MapFunction.register(pandas.DataFrame.notna, dtypes=np.bool)
round = MapFunction.register(pandas.DataFrame.round)