How to use the mne.read_evokeds function in mne

To help you get started, we’ve selected a few mne examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github mne-tools / mne-python / tutorials / source-modeling / plot_visualize_stc.py View on Github external
#
# In case ``mayavi`` is not available, we also offer a ``matplotlib``
# backend. Here we use verbose='error' to ignore a warning that not all
# vertices were used in plotting.
stc.plot(subjects_dir=subjects_dir, initial_time=initial_time,
         backend='matplotlib', verbose='error')

###############################################################################
#
# Volume Source Estimates
# -----------------------
# We can also visualize volume source estimates (used for deep structures).
#
# Let us load the sensor-level evoked data. We select the MEG channels
# to keep things simple.
evoked = read_evokeds(fname_evoked, condition=0, baseline=(None, 0))
evoked.pick_types(meg=True, eeg=False)

###############################################################################
# Then, we can load the precomputed inverse operator from a file.
fname_inv = data_path + '/MEG/sample/sample_audvis-meg-vol-7-meg-inv.fif'
inv = read_inverse_operator(fname_inv)
src = inv['src']

###############################################################################
# The source estimate is computed using the inverse operator and the
# sensor-space data.
snr = 3.0
lambda2 = 1.0 / snr ** 2
method = "dSPM"  # use dSPM method (could also be MNE or sLORETA)
stc = apply_inverse(evoked, inv, lambda2, method)
stc.crop(0.0, 0.2)
github pelednoam / mmvt / src / misc / subcortical_meg_reconstruction.py View on Github external
def calc_sub_cortical_activity(events_id, evoked_fn, inv_fn, sub_corticals_codes_file, baseline_min_t=None,
        baseline_max_t = 0, snr = 3.0, inverse_method='dSPM'):

    sub_corticals = read_sub_corticals_code_file(sub_corticals_codes_file)
    if len(sub_corticals) == 0:
        return

    lambda2 = 1.0 / snr ** 2
    lut = read_freesurfer_lookup_table(FREESURFER_HOME)
    for cond in events_id.keys():
        evo = evoked_fn.format(cond=cond)
        evoked = {event:mne.read_evokeds(evo, baseline=(baseline_min_t, baseline_max_t))[0] for event in [event]}
        inverse_operator = read_inverse_operator(inv_fn.format(cond=cond))
        stc = apply_inverse(evoked[cond], inverse_operator, lambda2, inverse_method)
        read_vertices_from = len(stc.vertices[0])+len(stc.vertices[1])
        sub_corticals_activity = {}
        for sub_cortical_ind, sub_cortical_code in enumerate(sub_corticals):
            # +2 becasue the first two are the hemispheres
            sub_corticals_activity[sub_cortical_code] = stc.data[
                read_vertices_from: read_vertices_from + len(stc.vertices[sub_cortical_ind + 2])]
            read_vertices_from += len(stc.vertices[sub_cortical_ind + 2])

        if not os.path.isdir:
            os.mkdir(os.path.join(SUBJECT_MEG_FOLDER, 'subcorticals'))
        for sub_cortical_code, activity in sub_corticals_activity.iteritems():
            sub_cortical, _ = get_numeric_index_to_label(sub_cortical_code, lut)
            np.save(os.path.join(SUBJECT_MEG_FOLDER, 'subcorticals', '{}-{}-{}'.format(cond, sub_cortical, inverse_method)), activity.mean(0))
            np.save(os.path.join(SUBJECT_MEG_FOLDER, 'subcorticals', '{}-{}-{}-all-vertices'.format(cond, sub_cortical, inverse_method)), activity)
github mne-tools / mne-study-template / 10-make_forward.py View on Github external
msg = f'Input: {fname_evoked}, Output: {fname_fwd}'
    logger.info(gen_log_message(message=msg, step=10, subject=subject,
                                session=session))
    # Find the raw data file
    trans = get_head_mri_trans(
        bids_basename=(bids_basename.copy()
                       .update(run=config.get_runs()[0], prefix=None)),
        bids_root=config.bids_root)

    mne.write_trans(fname_trans, trans)

    src = mne.setup_source_space(subject, spacing=config.spacing,
                                 subjects_dir=config.get_fs_subjects_dir(),
                                 add_dist=False)

    evoked = mne.read_evokeds(fname_evoked, condition=0)

    # Here we only use 3-layers BEM only if EEG is available.
    if 'eeg' in config.ch_types:
        model = mne.make_bem_model(subject, ico=4,
                                   conductivity=(0.3, 0.006, 0.3),
                                   subjects_dir=config.get_fs_subjects_dir())
    else:
        model = mne.make_bem_model(subject, ico=4, conductivity=(0.3,),
                                   subjects_dir=config.get_fs_subjects_dir())

    bem = mne.make_bem_solution(model)
    fwd = mne.make_forward_solution(evoked.info, trans, src, bem,
                                    mindist=config.mindist)
    mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
github pelednoam / mmvt / src / beamformers_electrodes_tweak.py View on Github external
def read_vars(events_id, region, read_csd=True):
    for event in events_id.keys():
        forward, noise_csd, data_csd = None, None, None
        if not region is None:
            forward = mne.read_forward_solution(get_cond_fname(FWD_X, event, region=region)) #, surf_ori=True)
        epochs = mne.read_epochs(get_cond_fname(EPO, event))
        evoked = mne.read_evokeds(get_cond_fname(EVO, event), baseline=(None, 0))[0]
        noise_cov = calc_cov(get_cond_fname(DATA_COV, event), event, epochs, None, 0)
        data_cov = calc_cov(get_cond_fname(NOISE_COV, event), event, epochs, 0.0, 1.0)
        if read_csd:
            noise_csd = calc_csd(NOISE_CSD, event, epochs, -0.5, 0., mode='multitaper', fmin=6, fmax=10, overwrite=False)
            data_csd = calc_csd(DATA_CSD, event, epochs, 0.0, 1.0, mode='multitaper', fmin=6, fmax=10, overwrite=False)
        yield event, forward, evoked, epochs, data_cov, noise_cov, data_csd, noise_csd
github mne-tools / mne-python / tutorials / source-modeling / plot_dipole_orientations.py View on Github external
See :ref:`inverse_orientation_constrains`
"""

###############################################################################
# Loading data
# ------------
# Load everything we need to perform source localization on the sample dataset.

import mne
import numpy as np
from mne.datasets import sample
from mne.minimum_norm import make_inverse_operator, apply_inverse

data_path = sample.data_path()
evokeds = mne.read_evokeds(data_path + '/MEG/sample/sample_audvis-ave.fif')
left_auditory = evokeds[0].apply_baseline()
fwd = mne.read_forward_solution(
    data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif')
mne.convert_forward_solution(fwd, surf_ori=True, copy=False)
noise_cov = mne.read_cov(data_path + '/MEG/sample/sample_audvis-cov.fif')
subject = 'sample'
subjects_dir = data_path + '/subjects'
trans_fname = data_path + '/MEG/sample/sample_audvis_raw-trans.fif'

###############################################################################
# The source space
# ----------------
# Let's start by examining the source space as constructed by the
# :func:`mne.setup_source_space` function. Dipoles are placed along fixed
# intervals on the cortex, determined by the ``spacing`` parameter. The source
# space does not define the orientation for these dipoles.
github mne-tools / mne-biomag-group-demo / scripts / results / plot_analysis_4.py View on Github external
eve_fname = op.join(subject_dir, 'run_01_filt_sss-eve.fif')
epo_fname = op.join(subject_dir,
                    '%s_highpass-%sHz-epo.fif' % (subject, l_freq))

events = mne.read_events(eve_fname)
fig = mne.viz.plot_events(events, show=False)
fig.suptitle('Events from run 01')

epochs = mne.read_epochs(epo_fname)
epochs.plot_drop_log()

###############################################################################
# Evoked responses :ref:`sphx_glr_auto_scripts_06-make_evoked.py`
ave_fname = op.join(subject_dir,
                    '%s_highpass-%sHz-ave.fif' % (subject, l_freq))
evoked = mne.read_evokeds(ave_fname)

###############################################################################
# Faces
famous_evo, scrambled_evo, unfamiliar_evo, contrast_evo, faces_evo = evoked
faces_evo.plot(spatial_colors=True, gfp=True, ylim=ylim,
               window_title='Faces %s' % subject)

###############################################################################
# Famous
famous_evo.plot(spatial_colors=True, gfp=True, ylim=ylim,
                window_title='Famous %s' % subject)

###############################################################################
# Scrambled
scrambled_evo.plot(spatial_colors=True, gfp=True, ylim=ylim,
                   window_title='Scrambled %s' % subject)
github mne-tools / mne-biomag-group-demo / scripts / results / demos / plot_tsss_analysis.py View on Github external
# Events :ref:`sphx_glr_auto_scripts_02-extract_events.py`.
# Epochs :ref:`sphx_glr_auto_scripts_06-make_epochs.py`.
eve_fname = op.join(subject_dir, 'run_01-eve.fif')
epo_fname = op.join(subject_dir, '%s-tsss_%d-epo.fif' % (subject, st_duration))

events = mne.read_events(eve_fname)
fig = mne.viz.plot_events(events, show=False)
fig.suptitle('Events from run 01')

epochs = mne.read_epochs(epo_fname)
epochs.plot_drop_log()

###############################################################################
# Evoked responses :ref:`sphx_glr_auto_scripts_07-make_evoked.py`
ave_fname = op.join(subject_dir, '%s-tsss_%d-ave.fif' % (subject, st_duration))
evoked = mne.read_evokeds(ave_fname)
famous_evo, scrambled_evo, unfamiliar_evo, contrast_evo, faces_evo = evoked[:5]

###############################################################################
# Faces
faces_evo.plot(spatial_colors=True, gfp=True, ylim=ylim,
               window_title='Faces %s' % subject)

###############################################################################
# Famous
famous_evo.plot(spatial_colors=True, gfp=True, ylim=ylim,
                window_title='Famous %s' % subject)

###############################################################################
# Scrambled
scrambled_evo.plot(spatial_colors=True, gfp=True, ylim=ylim,
                   window_title='Scrambled %s' % subject)
github pelednoam / mmvt / src / examples / epilepsy / analyse_meg_epilepsy_clips.py View on Github external
def plot_all_files_graph_max(subject, baseline_fnames, event_fname, func_name, bands_names, modality, input_template,
                             sz_name='', sfreq=None, do_plot=False, overwrite=False):
    if sz_name == '':
        sz_name = utils.namebase(event_fname)
    output_fol = utils.make_dir(op.join(
        MMVT_DIR, subject, 'connectivity', '{}_{}'.format(modality, func_name), 'runs', sz_name))
    if modality == 'ieeg':
        # clip = np.load(event_fname)
        t_start, t_end = -5, 5
    else:
        clip = mne.read_evokeds(event_fname)[0]
        sfreq = clip.info['sfreq']
        t_start, t_end = clip.times[0], clip.times[-1]

    windows_length = 500
    half_window = (1 /sfreq) * (windows_length / 2) # In seconds
    scores = {}
    for band_name in bands_names:
        band_fol = utils.make_dir(op.join(MMVT_DIR, subject, 'connectivity', '{}_{}'.format(modality, func_name), band_name))
        con_name = '{}_{}_mi'.format(modality, band_name)
        figure_name = '{}_{}_{}.jpg'.format(con_name, func_name, sz_name)
        output_fname = op.join(output_fol, figure_name)
        # if op.isfile(output_fname) and not overwrite:
        #     print('{} already exist'.format(figure_name))
        #     continue
        all_files_found = True
        for fname in baseline_fnames + [event_fname]:
github pelednoam / mmvt / src / preproc / meg.py View on Github external
def get_evoked_cond(cond_name, baseline=(None, 0), apply_SSP_projection_vectors=True, add_eeg_ref=True):
    evo_fname, evo_found = locating_file(EVO, '*ave.fif')
    if not evo_found:
        print('get_evoked_cond: No evoked file found!')
        return None
    if '{cond}' not in evo_fname:
        try:
            evoked = mne.read_evokeds(evo_fname, condition=cond_name, baseline=baseline)
        except:
            print('No evoked data with the condition {}'.format(cond_name))
            evoked = None
    else:
        evo_cond = get_cond_fname(evo_fname, cond_name)
        if op.isfile(evo_cond):
            evoked = mne.read_evokeds(evo_cond, baseline=baseline)[0]
        else:
            print('No evoked file, trying to use epo file')
            epo_fname, epo_found = locating_file(EPO, '*epo.fif')
            if not epo_found:
                print('No epochs were found!')
                return None
            if '{cond}' not in epo_fname:
                epochs = mne.read_epochs(epo_fname, apply_SSP_projection_vectors, add_eeg_ref)
                evoked = epochs[cond_name].average()
github alphacsc / alphacsc / examples_multicsc / plot_fit_dipole_somato.py View on Github external
from alphacsc.utils import get_uv
from alphacsc.utils.viz import COLORS

data_path = mne.datasets.somato.data_path()
subjects_dir = op.join(data_path, 'subjects')

fname_ave = 'examples_multicsc/atom_multi_somato-ave.fif'

fname_raw = os.path.join(data_path, 'sef_raw_sss.fif')
fname_bem = op.join(subjects_dir, 'somato', 'bem', 'somato-5120-bem-sol.fif')
fname_trans = op.join(data_path, 'MEG', 'somato',
                      'sef_raw_sss-trans.fif')
fname_surf_lh = op.join(subjects_dir, 'somato', 'surf', 'lh.white')

atom_idx = 4
evoked = mne.read_evokeds(fname_ave, baseline=None)[atom_idx]
evoked.pick_types(meg=True, eeg=False)

epochs = load_data(epoch=True, return_epochs=True)
cov = mne.compute_covariance(epochs)

# Fit a dipole
dip = mne.fit_dipole(evoked, cov, fname_bem, fname_trans)[0]

# Plot the result in 3D brain with the MRI image.
fig = plt.figure(figsize=plt.figaspect(2.))
ax = fig.add_subplot(2, 1, 1, projection='3d')
dip.plot_locations(fname_trans, 'somato', subjects_dir, ax=ax,
                   mode='orthoview')
best_idx = np.argmax(dip.gof)
best_time = dip.times[best_idx]
ax.set_title('Dipole fit (Highest GOF=%0.1f%%)' % dip.gof[best_idx])