How to use the mlrun.utils.logger.debug function in mlrun

To help you get started, we’ve selected a few mlrun examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github mlrun / mlrun / mlrun / runtimes / base.py View on Github external
if refresh and self._is_remote_api():
            try:
                meta = self.metadata
                db_func = db.get_function(meta.name, meta.project, meta.tag)
                if db_func and 'status' in db_func:
                    self.status = db_func['status']
                    if self.status.state and self.status.state == 'ready':
                        self.spec.image = get_in(db_func, 'spec.image', self.spec.image)
            except Exception:
                pass

        tag = tag or self.metadata.tag

        obj = self.to_dict()
        logger.debug('saving function: {}, tag: {}'.format(self.metadata.name, tag))
        hash_key = db.store_function(
            obj, self.metadata.name, self.metadata.project, tag, versioned
        )
        return hash_key
github mlrun / mlrun / mlrun / api / utils / periodic.py View on Github external
def cancel_periodic_functions():
    logger.debug('Canceling periodic functions')
    global tasks
    for task in tasks:
        task.cancel()
github mlrun / mlrun / mlrun / runtimes / local.py View on Github external
def _run(self, runobj: RunObject, execution):
        environ['MLRUN_EXEC_CONFIG'] = runobj.to_json()
        tmp = mktemp('.json')
        environ['MLRUN_META_TMPFILE'] = tmp
        if self.spec.rundb:
            environ['MLRUN_DBPATH'] = self.spec.rundb

        handler = runobj.spec.handler
        logger.debug(
            'starting local run: {} # {}'.format(self.spec.command, handler or 'main')
        )

        if handler:
            if self.spec.pythonpath:
                set_paths(self.spec.pythonpath)

            mod, fn = load_module(self.spec.command, handler)
            context = MLClientCtx.from_dict(
                runobj.to_dict(),
                rundb=self.spec.rundb,
                autocommit=False,
                tmp=tmp,
                host=socket.gethostname(),
            )
            mod.global_mlrun_context = context
github mlrun / mlrun / mlrun / api / main.py View on Github external
def _cleanup_runtimes():
    logger.debug('Cleaning runtimes')
    db_session = create_session()
    try:
        for kind in RuntimeKinds.runtime_with_handlers():
            runtime_handler = get_runtime_handler(kind)
            runtime_handler.delete_resources(get_db(), db_session)
    finally:
        close_session(db_session)
github mlrun / mlrun / mlrun / artifacts / manager.py View on Github external
if producer.kind == 'run':
                db_key = producer.name + '_' + key
            else:
                db_key = key
        item.db_key = db_key if db_key else ''

        item.before_log()
        self.artifacts[key] = item

        if (upload is None and item.kind != 'dir') or upload:
            item.upload(self.data_stores)

        if db_key:
            self._log_to_db(db_key, producer.project, producer.inputs, item, tag)
        size = str(item.size) or '?'
        logger.debug(
            'log artifact {} at {}, size: {}, db: {}'.format(
                key,
                item.target_path,
                size,
                'Y' if (self.artifact_db and db_key) else 'N',
            )
        )
        return item
github mlrun / mlrun / mlrun / run.py View on Github external
get_pipeline_if_completed,
            run_id,
            namespace=namespace,
        )
    else:
        client = Client(namespace=namespace)
        resp = client.wait_for_run_completion(run_id, timeout)
        if resp:
            resp = resp.to_dict()

    status = resp['run']['status'] if resp else 'unknown'
    if expected_statuses:
        if status not in expected_statuses:
            raise RuntimeError(f"run status {status} not in expected statuses")

    logger.debug(
        f"Finished waiting for pipeline completion."
        f" run_id: {run_id},"
        f" status: {status},"
        f" namespace: {namespace}"
    )

    return resp
github mlrun / mlrun / mlrun / api / api / endpoints / runs.py View on Github external
async def update_run(
        request: Request,
        project: str,
        uid: str,
        iter: int = 0,
        db_session: Session = Depends(deps.get_db_session)):
    data = None
    try:
        data = await request.json()
    except ValueError:
        log_and_raise(HTTPStatus.BAD_REQUEST, reason="bad JSON body")

    logger.debug(data)
    await run_in_threadpool(get_db().update_run, db_session, data, uid, project, iter=iter)
    logger.info("update run: {}".format(data))
    return {}
github mlrun / mlrun / mlrun / runtimes / base.py View on Github external
log_mtime = crud.Logs.get_log_mtime(project, uid)
            log_mtime_datetime = datetime.fromtimestamp(log_mtime, timezone.utc)
            now = datetime.now(timezone.utc)
            run = db.read_run(db_session, uid, project)
            last_update_str = run.get('status', {}).get('last_update', now)
            last_update = datetime.fromisoformat(last_update_str)

            # this function is used to verify that logs collected from runtime resources before deleting them
            # here we're using the knowledge that the function is called only after a it was verified that the runtime
            # resource run is not in transient state, so we're assuming the run's last update is the last one, so if the
            # log file was modified after it, we're considering it as all logs collected
            if log_mtime_datetime < last_update:
                store_log = True

        if store_log:
            logger.debug('Storing runtime resource log before deletion')
            logs_from_k8s, _ = crud.Logs.get_log(
                db_session, project, uid, source=LogSources.K8S
            )
            crud.Logs.store_log(logs_from_k8s, project, uid, append=False)
github mlrun / mlrun / mlrun / api / api / endpoints / artifacts.py View on Github external
async def store_artifact(
    request: Request,
    project: str,
    uid: str,
    key: str,
    tag: str = "",
    iter: int = 0,
    db_session: Session = Depends(deps.get_db_session),
):
    data = None
    try:
        data = await request.json()
    except ValueError:
        log_and_raise(HTTPStatus.BAD_REQUEST, reason="bad JSON body")

    logger.debug(data)
    await run_in_threadpool(
        get_db().store_artifact,
        db_session,
        key,
        data,
        uid,
        iter=iter,
        tag=tag,
        project=project,
    )
    return {}