How to use the mlflow.tracking function in mlflow

To help you get started, we’ve selected a few mlflow examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github mlflow / mlflow / tests / tracking / _tracking_service / test_utils.py View on Github external
def test_standard_store_registry_with_mocked_entrypoint():
    mock_entrypoint = mock.Mock()
    mock_entrypoint.name = "mock-scheme"

    with mock.patch(
        "entrypoints.get_group_all", return_value=[mock_entrypoint]
    ):
        # Entrypoints are registered at import time, so we need to reload the
        # module to register the entrypoint given by the mocked
        # extrypoints.get_group_all
        reload(mlflow.tracking._tracking_service.utils)

        expected_standard_registry = {
            '',
            'file',
            'http',
            'https',
            'postgresql',
            'mysql',
            'sqlite',
            'mssql',
            'databricks',
            'mock-scheme'
        }
        assert expected_standard_registry.issubset(
            mlflow.tracking._tracking_service.utils._tracking_store_registry._registry.keys()
        )
github mlflow / mlflow-apps / tests / test_gbt.py View on Github external
def test_gbt():
    old_uri = tracking.get_tracking_uri()
    with TempDir(chdr=False, remove_on_exit=True) as tmp:
        try:
            diamonds = tmp.path("diamonds")
            artifacts = tmp.path("artifacts")
            os.mkdir(diamonds)
            os.mkdir(artifacts)
            tracking.set_tracking_uri(artifacts)
            mlflow.set_experiment("test-experiment")
            # Download the diamonds dataset via mlflow run
            run(".", entry_point="main", version=None,
                parameters={"dest-dir": diamonds},
                mode="local", cluster_spec=None, git_username=None, git_password=None,
                use_conda=True, storage_dir=None)

            # Run the main gbt app via mlflow
            submitted_run = run(
github mlflow / mlflow / tests / tracking / test_context.py View on Github external
def _currently_registered_run_context_provider_classes():
    return {
        provider.__class__
        for provider in mlflow.tracking.context._run_context_provider_registry
    }
github mlflow / mlflow / mlflow / __init__.py View on Github external
log_param = mlflow.tracking.fluent.log_param
log_metric = mlflow.tracking.fluent.log_metric
set_tag = mlflow.tracking.fluent.set_tag
delete_tag = mlflow.tracking.fluent.delete_tag
log_artifacts = mlflow.tracking.fluent.log_artifacts
log_artifact = mlflow.tracking.fluent.log_artifact
active_run = mlflow.tracking.fluent.active_run
get_run = mlflow.tracking.fluent.get_run
start_run = mlflow.tracking.fluent.start_run
end_run = mlflow.tracking.fluent.end_run
search_runs = mlflow.tracking.fluent.search_runs
get_artifact_uri = mlflow.tracking.fluent.get_artifact_uri
set_tracking_uri = tracking.set_tracking_uri
get_experiment = mlflow.tracking.fluent.get_experiment
get_experiment_by_name = mlflow.tracking.fluent.get_experiment_by_name
get_tracking_uri = tracking.get_tracking_uri
create_experiment = mlflow.tracking.fluent.create_experiment
set_experiment = mlflow.tracking.fluent.set_experiment
log_params = mlflow.tracking.fluent.log_params
log_metrics = mlflow.tracking.fluent.log_metrics
set_tags = mlflow.tracking.fluent.set_tags
delete_experiment = mlflow.tracking.fluent.delete_experiment
delete_run = mlflow.tracking.fluent.delete_run
register_model = mlflow.tracking._model_registry.fluent.register_model


run = projects.run


__all__ = ["ActiveRun", "log_param", "log_params", "log_metric", "log_metrics", "set_tag",
           "set_tags", "delete_tag", "log_artifacts", "log_artifact", "active_run", "start_run",
           "end_run", "search_runs", "get_artifact_uri", "set_tracking_uri", "create_experiment",
github amesar / mlflow-fun / tools / mlflow_fun / analytics / mlflow_utils.py View on Github external
def get_host_(tracking_uri):
    host = os.environ.get('DATABRICKS_HOST',None)
    if host is not None:
        return host
    try:
        db_profile = mlflow.tracking.utils.get_db_profile_from_uri(tracking_uri)
        config = databricks_utils.get_databricks_host_creds(db_profile)
        return config.host
    except Exception as e:
        return None
github amesar / mlflow-fun / tools / mlflow_fun / metrics / spark / dataframe_builder.py View on Github external
def __init__(self, mlflow_client=None, spark=None, logmod=20):
        self.logmod = logmod 
        self.mlflow_client = mlflow_client 
        self.spark = spark 
        self.mlflow_client = mlflow_client 
        if mlflow_client is None:
            self.mlflow_client = mlflow.tracking.MlflowClient()
            mlflow_utils.dump_mlflow_info()
        if spark is None:
            self.spark = SparkSession.builder.appName("mlflow_metrics").enableHiveSupport().getOrCreate()
        print("logmod:",logmod)
github mlflow / mlflow / mlflow / projects / databricks.py View on Github external
def run_databricks(remote_run, uri, entry_point, work_dir, parameters, experiment_id, cluster_spec):
    """
    Run the project at the specified URI on Databricks, returning a ``SubmittedRun`` that can be
    used to query the run's status or wait for the resulting Databricks Job run to terminate.
    """
    profile = get_db_profile_from_uri(tracking.get_tracking_uri())
    run_id = remote_run.info.run_id
    db_job_runner = DatabricksJobRunner(databricks_profile=profile)
    db_run_id = db_job_runner.run_databricks(
        uri, entry_point, work_dir, parameters, experiment_id, cluster_spec, run_id)
    submitted_run = DatabricksSubmittedRun(db_run_id, run_id, db_job_runner)
    submitted_run._print_description_and_log_tags()
    return submitted_run
github vonfeng / DPLink / codes / run.py View on Github external
parser.add_argument("--threshold", type=int, default=3200)
    parser.add_argument("--epoch", type=int, default=10)
    parser.add_argument("--pretrain_unit", type=str, default="ERCF", choices=["N", "E", "R", "C", "F", "ERCF"])
    args = parser.parse_args()

    USE_POI = (args.use_poi == 1)
    device = torch.device("cuda:" + args.gpu)

    mlflow.set_tracking_uri("/data1/output")
    experiment_name = "Default"
    experiment_ID = 0
    try:
        experiment_ID = mlflow.create_experiment(name=experiment_name)
        print("Initial Create!")
    except:
        service = mlflow.tracking.get_service()
        experiments = service.list_experiments()
        for exp in experiments:
            if exp.name == experiment_name:
                experiment_ID = exp.experiment_id
                print("Experiment Exists!")
                break

    setproctitle.setproctitle('DPLink')

    thre = args.threshold
    rnn_unit = 'GRU'
    attn_unit = 'dot'
    test_pretrain = False  # test the effect of different pretrain degree, working with run_pretrain
    pre_path, rank_pre2, hit_pre2 = None, None, None
    for run_id in range(args.repeat):
        with mlflow.start_run(experiment_id=experiment_ID):
github mlflow / mlflow / mlflow / projects / databricks.py View on Github external
def run_databricks(self, uri, entry_point, work_dir, parameters, experiment_id, cluster_spec,
                       run_id):
        tracking_uri = _get_tracking_uri_for_run()
        dbfs_fuse_uri = self._upload_project_to_dbfs(work_dir, experiment_id)
        env_vars = {
            tracking._TRACKING_URI_ENV_VAR: tracking_uri,
            tracking._EXPERIMENT_ID_ENV_VAR: experiment_id,
        }
        _logger.info("=== Running entry point %s of project %s on Databricks ===", entry_point, uri)
        # Launch run on Databricks
        command = _get_databricks_run_cmd(dbfs_fuse_uri, run_id, entry_point, parameters)
        return self._run_shell_command_job(uri, command, env_vars, cluster_spec)
github mlflow / mlflow / mlflow / runs.py View on Github external
@click.option("--experiment-id", envvar=mlflow.tracking._EXPERIMENT_ID_ENV_VAR, type=click.STRING,
              help="Specify the experiment ID for list of runs.", required=True)
@click.option("--view", "-v", default="active_only",
              help="Select view type for list experiments. Valid view types are "
                   "'active_only' (default), 'deleted_only', and 'all'.")
def list_run(experiment_id, view):
    """
    List all runs of the specified experiment in the configured tracking server.
    """
    store = _get_store()
    view_type = ViewType.from_string(view) if view else ViewType.ACTIVE_ONLY
    runs = store.search_runs([experiment_id], None, view_type)
    table = []
    for run in runs:
        tags = {k: v for k, v in run.data.tags.items()}
        run_name = tags.get(MLFLOW_RUN_NAME, "")
        table.append([conv_longdate_to_str(run.info.start_time), run_name, run.info.run_id])