Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
Args:
data_home (str): Local path where the dataset is stored.
If `None`, looks for the data in the default directory, `~/mir_datasets`
Returns:
missing_files (list): List of file paths that are in the dataset index
but missing locally
invalid_checksums (list): List of file paths that file exists in the dataset
index but has a different checksum compare to the reference checksum
"""
if data_home is None:
data_home = utils.get_default_dataset_path(DATASET_DIR)
missing_files, invalid_checksums = utils.validator(
DATA.index, data_home, silence=silence
)
return missing_files, invalid_checksums
"""Validate if the stored dataset is a valid version
Args:
data_home (str): Local path where the dataset is stored.
If `None`, looks for the data in the default directory, `~/mir_datasets`
Returns:
missing_files (list): List of file paths that are in the dataset index
but missing locally
invalid_checksums (list): List of file paths that file exists in the dataset
index but has a different checksum compare to the reference checksum
"""
if data_home is None:
data_home = utils.get_default_dataset_path(DATASET_DIR)
missing_files, invalid_checksums = utils.validator(
DATA.index, data_home, silence=silence
)
return missing_files, invalid_checksums
"""Validate if the stored dataset is a valid version
Args:
data_home (str): Local path where the dataset is stored.
If `None`, looks for the data in the default directory, `~/mir_datasets`
Returns:
missing_files (list): List of file paths that are in the dataset index
but missing locally
invalid_checksums (list): List of file paths that file exists in the dataset
index but has a different checksum compare to the reference checksum
"""
if data_home is None:
data_home = utils.get_default_dataset_path(DATASET_DIR)
missing_files, invalid_checksums = utils.validator(
DATA.index, data_home, silence=silence
)
return missing_files, invalid_checksums
Args:
dataset_path (str): ORCHSET dataset local path
data_home (str): Local path where the dataset is stored.
If `None`, looks for the data in the default directory, `~/mir_datasets`
Returns:
missing_files (list): List of file paths that are in the dataset index
but missing locally
invalid_checksums (list): List of file paths that file exists in the dataset
index but has a different checksum compare to the reference checksum
"""
if data_home is None:
data_home = utils.get_default_dataset_path(DATASET_DIR)
missing_files, invalid_checksums = utils.validator(
DATA.index, data_home, silence=silence
)
return missing_files, invalid_checksums
Args:
data_home (str): Local path where the dataset is stored.
If `None`, looks for the data in the default directory, `~/mir_datasets`
Returns:
missing_files (list): List of file paths that are in the dataset index
but missing locally
invalid_checksums (list): List of file paths that file exists in the dataset
index but has a different checksum compare to the reference checksum
"""
if data_home is None:
data_home = utils.get_default_dataset_path(DATASET_DIR)
missing_files, invalid_checksums = utils.validator(
DATA.index, data_home, silence=silence
)
return missing_files, invalid_checksums
Args:
data_home (str): Local path where the dataset is stored.
If `None`, looks for the data in the default directory, `~/mir_datasets`
Returns:
missing_files (list): List of file paths that are in the dataset index
but missing locally
invalid_checksums (list): List of file paths that file exists in the dataset
index but has a different checksum compare to the reference checksum
"""
if data_home is None:
data_home = utils.get_default_dataset_path(DATASET_DIR)
missing_files, invalid_checksums = utils.validator(
DATA.index, data_home, silence=silence
)
return missing_files, invalid_checksums
def validate(data_home=None, silence=False):
"""Validate if the stored dataset is a valid version
Args:
data_home (str): Local path where the dataset is stored.
If `None`, looks for the data in the default directory, `~/mir_datasets`
Returns:
missing_files (list): List of file paths that are in the dataset index
but missing locally
invalid_checksums (list): List of file paths that file exists in the dataset
index but has a different checksum compare to the reference checksum
"""
if data_home is None:
data_home = utils.get_default_dataset_path(DATASET_DIR)
missing_files, invalid_checksums = utils.validator(
DATA.index, data_home, silence=silence
)
return missing_files, invalid_checksums
Args:
data_home (str): Local path where the dataset is stored.
If `None`, looks for the data in the default directory, `~/mir_datasets`
Returns:
missing_files (list): List of file paths that are in the dataset index
but missing locally
invalid_checksums (list): List of file paths that file exists in the dataset
index but has a different checksum compare to the reference checksum
"""
if data_home is None:
data_home = utils.get_default_dataset_path(DATASET_DIR)
missing_files, invalid_checksums = utils.validator(
DATA.index, data_home, silence=silence
)
return missing_files, invalid_checksums