Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
except:
logger.error(f'Failed to create mindsdb Predictor')
exit(1)
try:
mdb.learn(from_data=train_file_name, to_predict=label_headers)
logger.info(f'--------------- Learning ran succesfully ---------------')
except:
print(traceback.format_exc())
logger.error(f'Failed during the training !')
exit(1)
# Predict
try:
mdb = mindsdb.Predictor(name='test_one_label_prediction')
logger.debug(f'Succesfully create mindsdb Predictor')
except:
print(traceback.format_exc())
logger.error(f'Failed to create mindsdb Predictor')
exit(1)
try:
results = mdb.predict(when_data=test_file_name)
for row in results:
expect_columns = [label_headers[0] ,label_headers[0] + '_confidence']
for col in expect_columns:
if col not in row:
logger.error(f'Prediction failed to return expected column: {col}')
logger.debug('Got row: {}'.format(row))
exit(1)
columns_train.extend(list(map(lambda col: col[1:int(len(col)*3/4)], labels)))
columns_to_file(columns_train, train_file_name, separator, headers=[*feature_headers,*label_headers])
# Create the testing dataset and save it to a file
columns_test = list(map(lambda col: col[int(len(col)*3/4):], features))
columns_to_file(columns_test, test_file_name, separator, headers=feature_headers)
logger.debug(f'Multilabel datasets generate and saved to files successfully')
except:
print(traceback.format_exc())
logger.error(f'Failed to generate datasets !')
exit(1)
# Train
mdb = None
try:
mdb = mindsdb.Predictor(name='test_multilabel_prediction')
logger.debug(f'Succesfully create mindsdb Predictor')
except:
logger.error(f'Failed to create mindsdb Predictor')
exit(1)
try:
mdb.learn(from_data=train_file_name, to_predict=label_headers)
logger.info(f'--------------- Learning ran succesfully ---------------')
except:
print(traceback.format_exc())
logger.error(f'Failed during the training !')
exit(1)
# Predict
try:
except:
logger.error(f'Failed to create mindsdb Predictor')
exit(1)
try:
mdb.learn(from_data=train_file_name, to_predict=label_headers)
logger.info(f'--------------- Learning ran succesfully ---------------')
except:
print(traceback.format_exc())
logger.error(f'Failed during the training !')
exit(1)
# Predict
try:
mdb = mindsdb.Predictor(name='test_multilabel_prediction')
logger.debug(f'Succesfully create mindsdb Predictor')
except:
print(traceback.format_exc())
logger.error(f'Failed to create mindsdb Predictor')
exit(1)
try:
results = mdb.predict(when_data=test_file_name)
for i in range(len(results)):
row = results[i]
expect_columns = [label_headers[0] ,label_headers[0] + '_confidence']
for col in expect_columns:
print(row[col])
if col not in row:
logger.error(f'Prediction failed to return expected column: {col}')
logger.debug('Got row: {}'.format(row))
import MySQLdb
from mindsdb import Predictor, MySqlDS
con = MySQLdb.connect("localhost", "root", "", "mysql")
cur = con.cursor()
cur.execute('DROP TABLE IF EXISTS test_mindsdb')
cur.execute('CREATE TABLE test_mindsdb(col_1 Text, col_2 BIGINT, col_3 BOOL)')
for i in range(0,5000):
cur.execute(f'INSERT INTO test_mindsdb VALUES ("This is tring number {i}", {i}, {i % 2 == 0})')
con.commit()
con.close()
mdb = Predictor(name='analyse_dataset_test_predictor')
mysql_ds = MySqlDS(query="SELECT * FROM test_mindsdb")
assert(len(mysql_ds._df) == 5000)
mdb.analyse_dataset(from_data=mysql_ds)
columns_train.extend(list(map(lambda col: col[1:int(len(col)*3/4)], labels)))
columns_to_file(columns_train, train_file_name, separator, headers=[*feature_headers,*label_headers])
# Create the testing dataset and save it to a file
columns_test = list(map(lambda col: col[int(len(col)*3/4):], features))
columns_to_file(columns_test, test_file_name, separator, headers=feature_headers)
logger.debug(f'Datasets generate and saved to files successfully')
except:
print(traceback.format_exc())
logger.error(f'Failed to generate datasets !')
exit(1)
# Train
mdb = None
try:
mdb = mindsdb.Predictor(name='test_one_label_prediction')
logger.debug(f'Succesfully create mindsdb Predictor')
except:
logger.error(f'Failed to create mindsdb Predictor')
exit(1)
try:
mdb.learn(from_data=train_file_name, to_predict=label_headers, backend=backend)
logger.info(f'--------------- Learning ran succesfully ---------------')
except:
print(traceback.format_exc())
logger.error(f'Failed during the training !')
exit(1)
# Predict
try:
except:
logger.error(f'Failed to create mindsdb Predictor')
exit(1)
try:
mdb.learn(from_data=train_file_name, to_predict=label_headers, backend=backend)
logger.info(f'--------------- Learning ran succesfully ---------------')
except:
print(traceback.format_exc())
logger.error(f'Failed during the training !')
exit(1)
# Predict
try:
mdb = mindsdb.Predictor(name='test_multilabel_prediction')
logger.debug(f'Succesfully create mindsdb Predictor')
except:
print(traceback.format_exc())
logger.error(f'Failed to create mindsdb Predictor')
exit(1)
try:
results = mdb.predict(when_data=test_file_name)
models = mdb.get_models()
mdb.get_model_data(models[0]['name'])
for i in range(len(results)):
row = results[i]
expect_columns = [label_headers[0] ,label_headers[0] + '_confidence']
for col in expect_columns:
print(row[col])
if col not in row:
columns_train.extend(list(map(lambda col: col[1:int(len(col)*3/4)], labels)))
columns_to_file(columns_train, train_file_name, separator, headers=[*feature_headers,*label_headers])
# Create the testing dataset and save it to a file
columns_test = list(map(lambda col: col[int(len(col)*3/4):], features))
columns_to_file(columns_test, test_file_name, separator, headers=feature_headers)
logger.debug(f'Multilabel datasets generate and saved to files successfully')
except:
print(traceback.format_exc())
logger.error(f'Failed to generate datasets !')
exit(1)
# Train
mdb = None
try:
mdb = mindsdb.Predictor(name='test_multilabel_prediction')
logger.debug(f'Succesfully create mindsdb Predictor')
except:
logger.error(f'Failed to create mindsdb Predictor')
exit(1)
try:
mdb.learn(from_data=train_file_name, to_predict=label_headers, backend=backend)
logger.info(f'--------------- Learning ran succesfully ---------------')
except:
print(traceback.format_exc())
logger.error(f'Failed during the training !')
exit(1)
# Predict
try:
from mindsdb import Predictor
mdb = Predictor(name='suicide_model')
mdb.learn(from_data="integration_testing/suicide.csv", to_predict='suicides_no')
# use the model to make predictions
result = Predictor(name='suicide_rates').predict(when={'country':'Greece','year':1981,'sex':'male','age':'35-54','population':300000})
# you can now print the results
print(result)
from mindsdb import Predictor
mdb = Predictor(name='analyse_dataset_test_predictor')
results = mdb.analyse_dataset(from_data="https://s3.eu-west-2.amazonaws.com/mindsdb-example-data/home_rentals.csv")
print('\n\n\n\n========================\n\n')
print(results)
def test():
import pprint
log.basicConfig(level=10)
u = Datum('int<8>',DEFAULT_CAPABILITIES >> 16)
pprint.pprint(u.toStringPacket())