Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test():
from mindsdb.libs.controllers.predictor import Predictor
from mindsdb import CONFIG
CONFIG.DEBUG_BREAK_POINT = PHASE_MODEL_TRAINER
mdb = Predictor(name='home_rentals')
mdb.learn(
from_data="https://raw.githubusercontent.com/mindsdb/mindsdb/master/docs/examples/basic/home_rentals.csv",
# the path to the file where we can learn from, (note: can be url)
to_predict='rental_price', # the column we want to learn to predict given all the data in the file
sample_margin_of_error=0.02,
stop_training_in_x_seconds=10
)
def test():
from mindsdb.libs.controllers.predictor import Predictor
from mindsdb import CONFIG
CONFIG.DEBUG_BREAK_POINT = PHASE_STATS_GENERATOR
mdb = Predictor(name='home_rentals')
mdb.learn(
from_data="https://s3.eu-west-2.amazonaws.com/mindsdb-example-data/home_rentals.csv",
# the path to the file where we can learn from, (note: can be url)
to_predict='rental_price', # the column we want to learn to predict given all the data in the file
sample_margin_of_error=0.02
)
def test():
from mindsdb.libs.controllers.predictor import Predictor
from mindsdb import CONFIG
CONFIG.DEBUG_BREAK_POINT = PHASE_DATA_EXTRACTOR
mdb = Predictor(name='home_rentals')
mdb.learn(
from_data="https://s3.eu-west-2.amazonaws.com/mindsdb-example-data/home_rentals.csv",
# the path to the file where we can learn from, (note: can be url)
to_predict='rental_price', # the column we want to learn to predict given all the data in the file
sample_margin_of_error=0.02
)
from mindsdb.libs.ml_models.pytorch.libs.torch_helpers import array_to_float_variable, variable_to_array
from mindsdb.libs.ml_models.pytorch.libs.torch_helpers import store_torch_object, get_stored_torch_object, LogLoss
from mindsdb.libs.data_types.trainer_response import TrainerResponse
from mindsdb.libs.data_types.tester_response import TesterResponse
from mindsdb.libs.data_types.file_saved_response import FileSavedResponse
from mindsdb.libs.helpers.train_helpers import getOneColPermutations
class BaseModel(nn.Module):
variable_wrapper = array_to_float_variable
variable_unwrapper = variable_to_array
ignore_types = [DATA_TYPES.TEXT]
use_full_text_input = False
if CONFIG.USE_CUDA:
torch.backends.cudnn.benchmark=True
def __init__(self, sample_batch, **kwargs):
"""
:param sample_batch:
:type sample_batch: utils.
:param use_cuda:
:param kwargs:
"""
super(BaseModel, self).__init__()
self.lossFunction = LogLoss()
self.errorFunction = LogLoss()
self.sample_batch = sample_batch
elif type in ['list']:
max_len = max([len(i) for i in message.keys()])
len_format = " {: >" + str(max_len) + "}: "
for key in message:
self.info(len_format.format(key) + '{val}'.format(val=message[key]))
else:
self.info(message)
self.info('info type: {type}'.format(type=type))
self.info(gen_chars(10, '-'))
main_logger_uuid = 'core-logger'
log = MindsdbLogger(log_level=CONFIG.DEFAULT_LOG_LEVEL, uuid=main_logger_uuid)
def getLatestFromDisk(self, path = CONFIG.MINDSDB_STORAGE_PATH):
"""
:return:
"""
obj = get_stored_torch_object(self.latest_file_id, path)
obj.eval()
return obj
elif type in ['list']:
max_len = max([len(i) for i in message.keys()])
len_format = " {: >" + str(max_len) + "}: "
for key in message:
self.info(len_format.format(key) + '{val}'.format(val=message[key]))
else:
self.info(message)
self.info('info type: {type}'.format(type=type))
self.info(gen_chars(10, '-'))
main_logger_uuid = 'core-logger'
log = MindsdbLogger(log_level=CONFIG.DEFAULT_LOG_LEVEL, log_url=None, send_logs=False, uuid=main_logger_uuid)
from mindsdb.libs.ml_models.pytorch.libs.torch_helpers import array_to_float_variable, variable_to_array
from mindsdb.libs.ml_models.pytorch.libs.torch_helpers import store_torch_object, get_stored_torch_object, LogLoss
from mindsdb.libs.data_types.trainer_response import TrainerResponse
from mindsdb.libs.data_types.tester_response import TesterResponse
from mindsdb.libs.data_types.file_saved_response import FileSavedResponse
from mindsdb.libs.helpers.train_helpers import getOneColPermutations
class BaseModel(nn.Module):
variable_wrapper = array_to_float_variable
variable_unwrapper = variable_to_array
ignore_types = [DATA_TYPES.SEQUENTIAL]
use_full_text_input = False
if CONFIG.USE_CUDA:
torch.backends.cudnn.benchmark=True
def __init__(self, sample_batch, **kwargs):
"""
:param sample_batch:
:type sample_batch: utils.
:param use_cuda:
:param kwargs:
"""
super(BaseModel, self).__init__()
self.lossFunction = LogLoss()
self.errorFunction = LogLoss()
self.sample_batch = sample_batch