How to use the m2cgen.ast.NumVal function in m2cgen

To help you get started, we’ve selected a few m2cgen examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github BayesWitnesses / m2cgen / tests / assemblers / test_tree.py View on Github external
def test_single_condition():
    estimator = tree.DecisionTreeRegressor()

    estimator.fit([[1], [2]], [1, 2])

    assembler = assemblers.TreeModelAssembler(estimator)
    actual = assembler.assemble()

    expected = ast.IfExpr(
        ast.CompExpr(
            ast.FeatureRef(0),
            ast.NumVal(1.5),
            ast.CompOpType.LTE),
        ast.NumVal(1.0),
        ast.NumVal(2.0))

    assert utils.cmp_exprs(actual, expected)
github BayesWitnesses / m2cgen / tests / assemblers / test_xgboost.py View on Github external
ast.BinNumExpr(
                ast.NumVal(base_score),
                ast.IfExpr(
                    ast.CompExpr(
                        ast.FeatureRef(12),
                        ast.NumVal(9.72500038),
                        ast.CompOpType.GTE),
                    ast.NumVal(1.67318344),
                    ast.NumVal(2.92757893)),
                ast.BinNumOpType.ADD),
            ast.IfExpr(
                ast.CompExpr(
                    ast.FeatureRef(5),
                    ast.NumVal(6.94099998),
                    ast.CompOpType.GTE),
                ast.NumVal(3.3400948),
                ast.NumVal(1.72118247)),
            ast.BinNumOpType.ADD))

    assert utils.cmp_exprs(actual, expected)
github BayesWitnesses / m2cgen / tests / interpreters / test_java.py View on Github external
def test_dependable_condition():
    left = ast.BinNumExpr(
        ast.IfExpr(
            ast.CompExpr(ast.NumVal(1),
                         ast.NumVal(1),
                         ast.CompOpType.EQ),
            ast.NumVal(1),
            ast.NumVal(2)),
        ast.NumVal(2),
        ast.BinNumOpType.ADD)

    right = ast.BinNumExpr(ast.NumVal(1), ast.NumVal(2), ast.BinNumOpType.DIV)
    bool_test = ast.CompExpr(left, right, ast.CompOpType.GTE)

    expr = ast.IfExpr(bool_test, ast.NumVal(1), ast.FeatureRef(0))

    expected_code = """
public class Model {

    public static double score(double[] input) {
        double var0;
        double var1;
        if ((1) == (1)) {
github BayesWitnesses / m2cgen / tests / interpreters / test_visual_basic.py View on Github external
def test_bin_num_expr():
    expr = ast.BinNumExpr(
        ast.BinNumExpr(
            ast.FeatureRef(0), ast.NumVal(-2), ast.BinNumOpType.DIV),
        ast.NumVal(2),
        ast.BinNumOpType.MUL)

    expected_code = """
Module Model
Function score(ByRef input_vector() As Double) As Double
    score = ((input_vector(0)) / (-2)) * (2)
End Function
End Module
"""

    interpreter = VisualBasicInterpreter()
    utils.assert_code_equal(interpreter.interpret(expr), expected_code)
github BayesWitnesses / m2cgen / tests / interpreters / test_visual_basic.py View on Github external
def test_if_expr():
    expr = ast.IfExpr(
        ast.CompExpr(ast.NumVal(1), ast.FeatureRef(0), ast.CompOpType.EQ),
        ast.NumVal(2),
        ast.NumVal(3))

    expected_code = """
Module Model
Function score(ByRef input_vector() As Double) As Double
    Dim var0 As Double
    If (1) == (input_vector(0)) Then
        var0 = 2
    Else
        var0 = 3
    End If
    score = var0
End Function
End Module
"""
github BayesWitnesses / m2cgen / tests / interpreters / test_python.py View on Github external
def test_bin_vector_num_expr():
    expr = ast.BinVectorNumExpr(
        ast.VectorVal([ast.NumVal(1), ast.NumVal(2)]),
        ast.NumVal(1),
        ast.BinNumOpType.MUL)

    interpreter = interpreters.PythonInterpreter()

    expected_code = """
import numpy as np
def score(input):
    return (np.asarray([1, 2])) * (1)
    """

    utils.assert_code_equal(interpreter.interpret(expr), expected_code)
github BayesWitnesses / m2cgen / tests / assemblers / test_linear.py View on Github external
def test_single_feature():
    estimator = linear_model.LinearRegression()
    estimator.coef_ = [1]
    estimator.intercept_ = 3

    assembler = assemblers.LinearModelAssembler(estimator)
    actual = assembler.assemble()

    expected = ast.BinNumExpr(
        ast.NumVal(3),
        ast.BinNumExpr(
            ast.FeatureRef(0),
            ast.NumVal(1),
            ast.BinNumOpType.MUL),
        ast.BinNumOpType.ADD)

    assert utils.cmp_exprs(actual, expected)