Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
self.assertEqual(ax0.get_ylabel(), 'Features')
self.assertLessEqual(len(ax0.patches), 30)
gbm1 = lgb.LGBMClassifier(n_estimators=10, num_leaves=3, silent=True)
gbm1.fit(self.X_train, self.y_train)
ax1 = lgb.plot_importance(gbm1, color='r', title='t', xlabel='x', ylabel='y')
self.assertIsInstance(ax1, matplotlib.axes.Axes)
self.assertEqual(ax1.get_title(), 't')
self.assertEqual(ax1.get_xlabel(), 'x')
self.assertEqual(ax1.get_ylabel(), 'y')
self.assertLessEqual(len(ax1.patches), 30)
for patch in ax1.patches:
self.assertTupleEqual(patch.get_facecolor(), (1., 0, 0, 1.)) # red
ax2 = lgb.plot_importance(gbm0, color=['r', 'y', 'g', 'b'],
title=None, xlabel=None, ylabel=None)
self.assertIsInstance(ax2, matplotlib.axes.Axes)
self.assertEqual(ax2.get_title(), '')
self.assertEqual(ax2.get_xlabel(), '')
self.assertEqual(ax2.get_ylabel(), '')
self.assertLessEqual(len(ax2.patches), 30)
self.assertTupleEqual(ax2.patches[0].get_facecolor(), (1., 0, 0, 1.)) # r
self.assertTupleEqual(ax2.patches[1].get_facecolor(), (.75, .75, 0, 1.)) # y
self.assertTupleEqual(ax2.patches[2].get_facecolor(), (0, .5, 0, 1.)) # g
self.assertTupleEqual(ax2.patches[3].get_facecolor(), (0, 0, 1., 1.)) # b
def test_plot_importance(self):
gbm0 = lgb.train(self.params, self.train_data, num_boost_round=10)
ax0 = lgb.plot_importance(gbm0)
self.assertIsInstance(ax0, matplotlib.axes.Axes)
self.assertEqual(ax0.get_title(), 'Feature importance')
self.assertEqual(ax0.get_xlabel(), 'Feature importance')
self.assertEqual(ax0.get_ylabel(), 'Features')
self.assertLessEqual(len(ax0.patches), 30)
gbm1 = lgb.LGBMClassifier(n_estimators=10, num_leaves=3, silent=True)
gbm1.fit(self.X_train, self.y_train)
ax1 = lgb.plot_importance(gbm1, color='r', title='t', xlabel='x', ylabel='y')
self.assertIsInstance(ax1, matplotlib.axes.Axes)
self.assertEqual(ax1.get_title(), 't')
self.assertEqual(ax1.get_xlabel(), 'x')
self.assertEqual(ax1.get_ylabel(), 'y')
self.assertLessEqual(len(ax1.patches), 30)
for patch in ax1.patches:
X_train, X_valid = X.iloc[train_index], X.iloc[valid_index]
y_train, y_valid = y.iloc[train_index], y.iloc[valid_index]
if isMORT:
model = LiteMORT(params).fit(X_train, y_train, eval_set=[(X_valid, y_valid)])
pred_val = model.predict(X_valid)
pred_raw = model.predict_raw(X_valid)
y_pred[valid_index] = pred_raw
fold_score = roc_auc_score(y_valid, pred_raw)
else:
lgtrain = lgb.Dataset(X_train, y_train)
lgval = lgb.Dataset(X_valid, y_valid)
model = lgb.train(params, lgtrain, num_rounds, valid_sets=lgval,
early_stopping_rounds=early_stopping_rounds, verbose_eval=100)
plt.figure(figsize=(12, 6))
lgb.plot_importance(model, max_num_features=30)
plt.title("Featurertances")
plt.show()
fold_importance = pd.DataFrame()
fold_importance["feature"] = X.columns
fold_importance["importance"] = model.feature_importance()
fold_importance["fold"] = fold_n + 1
feature_importance = pd.concat([feature_importance, fold_importance], axis=0)
model.save_model(f'model_lgb_poct_{fold_n}_.txt')
pred_val = model.predict(X_valid)
y_pred[valid_index] = pred_val
fold_score = roc_auc_score(y_valid, pred_val)
print("fold n°{} time={:.3g} score={:.4g}".format(fold_n, time.time() - t0, fold_score))
if test is not None:
pred_test = model.predict(test, num_iteration=model.best_iteration)
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X)
shap.summary_plot(shap_values, X, plot_type="bar", show=False)
save_fig(namespace, name, idx, importance_type='shap')
if name == 'XGBOOST':
for i in ['weight', 'cover', 'gain']:
if i == 'gain':
xgb.plot_importance(model.get_score(fmap='', importance_type=i), importance_type=i, max_num_features=20)
else:
xgb.plot_importance(model, importance_type=i, max_num_features=20)
save_fig(namespace, name, idx, importance_type=i)
elif name == 'LIGHTGBM':
for i in ['split', 'gain']:
lgb.plot_importance(model, importance_type=i, max_num_features=20)
save_fig(namespace, name, idx, importance_type=i)
else:
pass
def feature_importance(self):
lgb.plot_importance(self.model, max_num_features=10)
plt.show()
return self.model.feature_importance()
# train
gbm = lgb.train(params,
lgb_train,
num_boost_round=100,
valid_sets=[lgb_train, lgb_test],
feature_name=['f' + str(i + 1) for i in range(X_train.shape[-1])],
categorical_feature=[21],
evals_result=evals_result,
verbose_eval=10)
print('Plotting metrics recorded during training...')
ax = lgb.plot_metric(evals_result, metric='l1')
plt.show()
print('Plotting feature importances...')
ax = lgb.plot_importance(gbm, max_num_features=10)
plt.show()
print('Plotting split value histogram...')
ax = lgb.plot_split_value_histogram(gbm, feature='f26', bins='auto')
plt.show()
print('Plotting 54th tree...') # one tree use categorical feature to split
ax = lgb.plot_tree(gbm, tree_index=53, figsize=(15, 15), show_info=['split_gain'])
plt.show()
print('Plotting 54th tree with graphviz...')
graph = lgb.create_tree_digraph(gbm, tree_index=53, name='Tree54')
graph.render(view=True)