How to use the lenstronomy.Cosmo.lens_cosmo.LensCosmo function in lenstronomy

To help you get started, we’ve selected a few lenstronomy examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github sibirrer / lenstronomy / test / test_LensModel / test_Profiles / test_nfw_vir_trunc.py View on Github external
def setup(self):
        z_lens = 0.55
        z_source = 2.5
        from astropy.cosmology import FlatLambdaCDM
        cosmo = FlatLambdaCDM(H0=70, Om0=0.3, Ob0=0.05)
        self.nfw = NFWVirTrunc(z_lens=z_lens, z_source=z_source, cosmo=cosmo)
        self.lensCosmo = LensCosmo(z_lens=z_lens, z_source=z_source, cosmo=cosmo)
        NFWVirTrunc(z_lens=z_lens, z_source=z_source, cosmo=None)
github sibirrer / lenstronomy / test / test_LensModel / test_Profiles / test_nfw_mass_concentration.py View on Github external
def setup(self):
        self.z_lens, self.z_source = 0.5, 2
        from astropy.cosmology import FlatLambdaCDM
        cosmo = FlatLambdaCDM(H0=70, Om0=0.3, Ob0=0.05)
        self.nfw = NFW()
        self.nfwmc = NFWMC(z_source=self.z_source, z_lens=self.z_lens, cosmo=cosmo)
        self.lensCosmo = LensCosmo(z_lens=self.z_lens, z_source=self.z_source, cosmo=cosmo)
github sibirrer / lenstronomy / test / test_Cosmo / test_lens_cosmo.py View on Github external
def setup(self):
        z_L = 0.8
        z_S = 3.0
        from astropy.cosmology import FlatLambdaCDM
        cosmo = FlatLambdaCDM(H0=70, Om0=0.3, Ob0=0.05)
        self.lensCosmo = LensCosmo(z_L, z_S, cosmo=cosmo)
github sibirrer / lenstronomy / test / test_Cosmo / test_cosmo_sampling.py View on Github external
def setup(self):
        np.random.seed(seed=41)
        self.z_L = 0.8
        self.z_S = 3.0

        self.H0_true = 70
        self.omega_m_true = 0.3
        cosmo = FlatLambdaCDM(H0=self.H0_true, Om0=self.omega_m_true, Ob0=0.05)
        lensCosmo = LensCosmo(self.z_L, self.z_S, cosmo=cosmo)
        self.Dd_true = lensCosmo.D_d
        self.D_dt_true = lensCosmo.D_dt

        self.sigma_Dd = 100
        self.sigma_Ddt = 100
        num_samples = 10000
        self.D_dt_samples = np.random.normal(self.D_dt_true, self.sigma_Ddt, num_samples)
        self.D_d_samples = np.random.normal(self.Dd_true, self.sigma_Dd, num_samples)
github sibirrer / lenstronomy / lenstronomy / Cosmo / cosmo_solver.py View on Github external
def cosmo2angular_diameter_distances(H_0, omega_m, z_lens, z_source):
    """

    :param H_0: Hubble constant [km/s/Mpc]
    :param omega_m: dimensionless matter density at z=0
    :param z_lens: deflector redshift
    :param z_source: source redshift
    :return: angular diameter distances Dd and Ds/Dds
    """
    cosmo = FlatLambdaCDM(H0=H_0, Om0=omega_m, Ob0=0.)
    lensCosmo = LensCosmo(z_lens=z_lens, z_source=z_source, cosmo=cosmo)
    Dd = lensCosmo.dd
    Ds = lensCosmo.ds
    Dds = lensCosmo.dds
    return Dd, Ds/Dds
github sibirrer / lenstronomy / lenstronomy / Cosmo / lcdm.py View on Github external
def _get_cosom(self, H_0, Om0, Ode0=None):
        """

        :param H_0:
        :param Om0:
        :param Ode0:
        :return:
        """
        if self._flat is True:
            cosmo = FlatLambdaCDM(H0=H_0, Om0=Om0)
        else:
            cosmo = LambdaCDM(H0=H_0, Om0=Om0, Ode0=Ode0)
        lensCosmo = LensCosmo(z_lens=self.z_lens, z_source=self.z_source, cosmo=cosmo)
        return lensCosmo
github sibirrer / lenstronomy / lenstronomy / LensModel / Profiles / nfw_vir_trunc.py View on Github external
def __init__(self, z_lens, z_source, cosmo=None):
        """

        :param z_lens: redshift of lens
        :param z_source: redshift of source
        :param cosmo: astropy cosmology instance
        """

        if cosmo is None:
            from astropy.cosmology import FlatLambdaCDM
            cosmo = FlatLambdaCDM(H0=70, Om0=0.3, Ob0=0.05)
        self._lens_cosmo = LensCosmo(z_lens=z_lens, z_source=z_source, cosmo=cosmo)
        super(NFWVirTrunc, self).__init__()
github sibirrer / lenstronomy / lenstronomy / Analysis / kinematics_api.py View on Github external
:param Hernquist_approx: bool, if True, uses a Hernquist light profile matched to the half light radius of the deflector light profile to compute the kinematics
        :param MGE_light: bool, if true performs the MGE for the light distribution
        :param MGE_mass: bool, if true performs the MGE for the mass distribution
        :param kwargs_numerics_galkin: numerical settings for the integrated line-of-sight velocity dispersion
        :param kwargs_mge_mass: keyword arguments that go into the MGE decomposition routine
        :param kwargs_mge_light: keyword arguments that go into the MGE decomposition routine
        :param sampling_number: int, number of spectral rendering to compute the light weighted integrated LOS
        dispersion within the aperture. This keyword should be chosen high enough to result in converged results within the tolerance.
        :param num_kin_sampling: number of kinematic renderings on a total IFU
        :param num_psf_sampling: number of PSF displacements for each kinematic rendering on the IFU
        """
        self.z_d = z_lens
        self.z_s = z_source
        self._kwargs_aperture_kin = kwargs_aperture
        self._kwargs_psf_kin = kwargs_seeing
        self.lensCosmo = LensCosmo(z_lens, z_source, cosmo=cosmo)
        self.LensModel, self.SourceModel, self.LensLightModel, self.PointSource, extinction_class = class_creator.create_class_instances(
            all_models=True, **kwargs_model)
        self._lensLightProfile = LightProfileAnalysis(light_model=self.LensLightModel)
        self._lensMassProfile = LensProfileAnalysis(lens_model=self.LensModel)
        self._lens_light_model_list = self.LensLightModel.profile_type_list
        self._lens_model_list = self.LensModel.lens_model_list
        self._kwargs_cosmo = {'d_d': self.lensCosmo.dd, 'd_s': self.lensCosmo.ds, 'd_ds': self.lensCosmo.dds}
        self._lens_model_kinematics_bool = lens_model_kinematics_bool
        self._light_model_kinematics_bool = light_model_kinematics_bool
        self._sampling_number = sampling_number
        self._num_kin_sampling = num_kin_sampling
        self._num_psf_sampling = num_psf_sampling

        if kwargs_mge_mass is None:
            self._kwargs_mge_mass = {'n_comp': 20}
        else :