Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
# Create Datasets
train_dataset = l2l.vision.datasets.MiniImagenet(root='./data', mode='train')
valid_dataset = l2l.vision.datasets.MiniImagenet(root='./data', mode='validation')
test_dataset = l2l.vision.datasets.MiniImagenet(root='./data', mode='test')
train_dataset = l2l.data.MetaDataset(train_dataset)
valid_dataset = l2l.data.MetaDataset(valid_dataset)
test_dataset = l2l.data.MetaDataset(test_dataset)
train_transforms = [
l2l.data.transforms.NWays(train_dataset, ways),
l2l.data.transforms.KShots(train_dataset, 2*shots),
l2l.data.transforms.LoadData(train_dataset),
l2l.data.transforms.RemapLabels(train_dataset),
l2l.data.transforms.ConsecutiveLabels(train_dataset),
]
train_tasks = l2l.data.TaskDataset(train_dataset,
task_transforms=train_transforms,
num_tasks=20000)
valid_transforms = [
l2l.data.transforms.NWays(valid_dataset, ways),
l2l.data.transforms.KShots(valid_dataset, 2*shots),
l2l.data.transforms.LoadData(valid_dataset),
l2l.data.transforms.ConsecutiveLabels(train_dataset),
l2l.data.transforms.RemapLabels(valid_dataset),
]
valid_tasks = l2l.data.TaskDataset(valid_dataset,
task_transforms=valid_transforms,
num_tasks=600)
test_transforms = [
l2l.data.transforms.NWays(test_dataset, ways),
param_str = f'omniglot_nt={args.n_train}_kt={args.k_train}_qt={args.q_train}_' \
f'nv={args.n_test}_kv={args.k_test}_qv={args.q_test}'
filepath = f'./data/{param_str}.pth'
omniglot = FullOmniglot(root='./data',
transform=transforms.Compose([
l2l.vision.transforms.RandomDiscreteRotation(
[0.0, 90.0, 180.0, 270.0]),
transforms.Resize(28, interpolation=LANCZOS),
transforms.ToTensor(),
lambda x: 1.0 - x,
]),
download=True)
omniglot = l2l.data.MetaDataset(omniglot)
classes = list(range(1623))
random.shuffle(classes)
train_generator = l2l.data.TaskGenerator(dataset=omniglot,
ways=args.k_train,
classes=classes[:1100],
tasks=20000)
valid_generator = l2l.data.TaskGenerator(dataset=omniglot,
ways=args.k_test,
classes=classes[1100:1200],
tasks=1024)
test_generator = l2l.data.TaskGenerator(dataset=omniglot,
ways=args.k_test,
classes=classes[1200:],
tasks=1024)
model = OmniglotCNN()
random.seed(seed)
np.random.seed(seed)
th.manual_seed(seed)
device = th.device('cpu')
if cuda:
th.cuda.manual_seed(seed)
device = th.device('cuda')
omniglot = l2l.vision.datasets.FullOmniglot(root='./data',
transform=transforms.Compose([
transforms.Resize(28, interpolation=LANCZOS),
transforms.ToTensor(),
lambda x: 1.0 - x,
]),
download=True)
dataset = l2l.data.MetaDataset(omniglot)
classes = list(range(1623))
random.shuffle(classes)
train_transforms = [
l2l.data.transforms.FilterLabels(dataset, classes[:1100]),
l2l.data.transforms.NWays(dataset, ways),
l2l.data.transforms.KShots(dataset, 2*shots),
l2l.data.transforms.LoadData(dataset),
l2l.data.transforms.RemapLabels(dataset),
l2l.data.transforms.ConsecutiveLabels(dataset),
l2l.vision.transforms.RandomClassRotation(dataset, [0.0, 90.0, 180.0, 270.0])
]
train_tasks = l2l.data.TaskDataset(dataset,
task_transforms=train_transforms,
num_tasks=20000)
# Create Datasets
train_dataset = l2l.vision.datasets.MiniImagenet(root='./data', mode='train')
valid_dataset = l2l.vision.datasets.MiniImagenet(root='./data', mode='validation')
test_dataset = l2l.vision.datasets.MiniImagenet(root='./data', mode='test')
train_dataset = l2l.data.MetaDataset(train_dataset)
valid_dataset = l2l.data.MetaDataset(valid_dataset)
test_dataset = l2l.data.MetaDataset(test_dataset)
train_transforms = [
NWays(train_dataset, ways),
KShots(train_dataset, 2*shots),
LoadData(train_dataset),
RemapLabels(train_dataset),
ConsecutiveLabels(train_dataset),
]
train_tasks = l2l.data.TaskDataset(train_dataset,
task_transforms=train_transforms,
num_tasks=20000)
valid_transforms = [
NWays(valid_dataset, ways),
KShots(valid_dataset, 2*shots),
LoadData(valid_dataset),
ConsecutiveLabels(train_dataset),
RemapLabels(valid_dataset),
]
valid_tasks = l2l.data.TaskDataset(valid_dataset,
task_transforms=valid_transforms,
num_tasks=600)
test_transforms = [
NWays(test_dataset, ways),
cuda=True,
seed=42,
):
random.seed(seed)
np.random.seed(seed)
th.manual_seed(seed)
device = th.device('cpu')
if cuda and th.cuda.device_count():
th.cuda.manual_seed(seed)
device = th.device('cuda')
# Create Datasets
train_dataset = l2l.vision.datasets.MiniImagenet(root='./data', mode='train')
valid_dataset = l2l.vision.datasets.MiniImagenet(root='./data', mode='validation')
test_dataset = l2l.vision.datasets.MiniImagenet(root='./data', mode='test')
train_dataset = l2l.data.MetaDataset(train_dataset)
valid_dataset = l2l.data.MetaDataset(valid_dataset)
test_dataset = l2l.data.MetaDataset(test_dataset)
train_transforms = [
NWays(train_dataset, ways),
KShots(train_dataset, 2*shots),
LoadData(train_dataset),
RemapLabels(train_dataset),
ConsecutiveLabels(train_dataset),
]
train_tasks = l2l.data.TaskDataset(train_dataset,
task_transforms=train_transforms,
num_tasks=20000)
valid_transforms = [
NWays(valid_dataset, ways),