Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
return self.latent_variable._gather_saveables_for_checkpoint()
# TODO: Maybe encode the fact the variable is an QuantizedVariable in to_proto().
def to_proto(self, *args, **kwargs):
return self.latent_variable.to_proto(*args, **kwargs)
def from_proto(self, *args, **kwargs):
return self.latent_variable.from_proto(*args, **kwargs)
def _as_graph_element(self):
return self._quantize(self.latent_variable._as_graph_element())
QuantizedVariable._OverloadAllOperators()
tf.register_tensor_conversion_function(
QuantizedVariable, QuantizedVariable._dense_var_to_tensor
)
ops.register_dense_tensor_like_type(QuantizedVariable)
# TODO: Maybe encode the fact the variable is an QuantizedVariable in to_proto().
def to_proto(self, *args, **kwargs):
return self.latent_variable.to_proto(*args, **kwargs)
def from_proto(self, *args, **kwargs):
return self.latent_variable.from_proto(*args, **kwargs)
def _as_graph_element(self):
return self._quantize(self.latent_variable._as_graph_element())
QuantizedVariable._OverloadAllOperators()
tf.register_tensor_conversion_function(
QuantizedVariable, QuantizedVariable._dense_var_to_tensor
)
ops.register_dense_tensor_like_type(QuantizedVariable)
def getter(*args, **kwargs):
variable = old_getter(*args, **kwargs)
return QuantizedVariable.from_variable(variable, quantizer)
# Therefore models checkpointed with QuantizedVariables can be restored on
# models with normal variables, and vice versa.
return self.latent_variable._gather_saveables_for_checkpoint()
# TODO: Maybe encode the fact the variable is an QuantizedVariable in to_proto().
def to_proto(self, *args, **kwargs):
return self.latent_variable.to_proto(*args, **kwargs)
def from_proto(self, *args, **kwargs):
return self.latent_variable.from_proto(*args, **kwargs)
def _as_graph_element(self):
return self._quantize(self.latent_variable._as_graph_element())
QuantizedVariable._OverloadAllOperators()
tf.register_tensor_conversion_function(
QuantizedVariable, QuantizedVariable._dense_var_to_tensor
)
ops.register_dense_tensor_like_type(QuantizedVariable)
value instead of a MirroredVariable. So we cannot properly wrap it in an
AutoCastVariable. We return the original variable in that case.
# Arguments
variable: A tf.Variable or op.
quantizer: An optional quantizer to transform the floating-point variable to a
fake quantized variable.
precision: An optional integer defining the precision of the quantized variable.
If `None`, `quantizer.precision` is used.
wrap: A boolean to define whether to wrap the variable in an QuantizedVariable.
# Returns
An QuantizedVariable if wrap is True and variable is a resource variable.
"""
if wrap and resource_variable_ops.is_resource_variable(variable):
return QuantizedVariable.from_variable(variable, quantizer, precision)
return variable