Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def build(self):
self.M, self.N = self.shape
if 2 ** self.J > self.M or 2 ** self.J > self.N:
raise RuntimeError('The smallest dimension should be larger than 2^J.')
self.M_padded, self.N_padded = compute_padding(self.M, self.N, self.J)
# pads equally on a given side if the amount of padding to add is an even number of pixels, otherwise it adds an extra pixel
self.pad = self.backend.Pad([(self.M_padded - self.M) // 2, (self.M_padded - self.M+1) // 2, (self.N_padded - self.N) // 2,
(self.N_padded - self.N + 1) // 2], [self.M, self.N], pre_pad=self.pre_pad)
self.unpad = self.backend.unpad
def build(self):
self.M, self.N = self.shape
# use the default backend if no backend is provided
if not self.backend:
from ..backend.torch_backend import backend
self.backend = backend
elif self.backend.name[0:5] != 'torch':
raise RuntimeError('This backend is not supported.')
if 2 ** self.J > self.shape[0] or 2 ** self.J > self.shape[1]:
raise RuntimeError('The smallest dimension should be larger than 2^J.')
self.M_padded, self.N_padded = compute_padding(self.M, self.N, self.J)
# pads equally on a given side if the amount of padding to add is an even number of pixels, otherwise it adds an extra pixel
self.pad = self.backend.Pad([(self.M_padded - self.M) // 2, (self.M_padded - self.M+1) // 2, (self.N_padded - self.N) // 2,
(self.N_padded - self.N + 1) // 2], [self.M, self.N], pre_pad=self.pre_pad)
self.unpad = self.backend.unpad
self.create_and_register_filters()
def build(self):
self.M, self.N = self.shape
self.modulus = Modulus()
self.M_padded, self.N_padded = compute_padding(self.M, self.N, self.J)
# pads equally on a given side if the amount of padding to add is an even number of pixels, otherwise it adds an extra pixel
self.pad = Pad([(self.M_padded - self.M) // 2, (self.M_padded - self.M+1) // 2, (self.N_padded - self.N) // 2, (self.N_padded - self.N + 1) // 2], [self.M, self.N], pre_pad=self.pre_pad)
self.subsample_fourier = SubsampleFourier()
# Create the filters
filters = filter_bank(self.M_padded, self.N_padded, self.J, self.L)
self.Psi = convert_filters(filters['psi'])
self.Phi = convert_filters([filters['phi'][j] for j in range(self.J)])
def build(self):
self.M, self.N = self.shape
if not self.backend:
from ..backend.tensorflow_backend import backend # is imported like a module and not a class?
self.backend = backend
elif self.backend.name[0:10] != 'tensorflow':
raise RuntimeError('This backend is not supported.')
if 2 ** self.J > self.shape[0] or 2 ** self.J > self.shape[1]:
raise RuntimeError('The smallest dimension should be larger than 2^J')
self.M_padded, self.N_padded = compute_padding(self.M, self.N, self.J)
# pads equally on a given side if the amount of padding to add is an even number of pixels, otherwise it adds an extra pixel
self.pad = self.backend.Pad(
[(self.M_padded - self.M) // 2, (self.M_padded - self.M + 1) // 2, (self.N_padded - self.N) // 2,
(self.N_padded - self.N + 1) // 2], [self.M, self.N], pre_pad=self.pre_pad)
self.unpad = self.backend.unpad
filters = filter_bank(self.M_padded, self.N_padded, self.J, self.L)
self.phi, self.psi = filters['phi'], filters['psi']
def build(self):
self.M, self.N = self.shape
if not self.backend:
from ..backend.numpy_backend import backend # is imported like a module and not a class?
self.backend = backend
elif self.backend.name[0:5] != 'numpy':
raise RuntimeError('This backend is not supported.')
if 2 ** self.J > self.shape[0] or 2 ** self.J > self.shape[1]:
raise RuntimeError('The smallest dimension should be larger than 2^J')
self.M_padded, self.N_padded = compute_padding(self.M, self.N, self.J)
# pads equally on a given side if the amount of padding to add is an even number of pixels, otherwise it adds an extra pixel
self.pad = self.backend.Pad(
[(self.M_padded - self.M) // 2, (self.M_padded - self.M + 1) // 2, (self.N_padded - self.N) // 2,
(self.N_padded - self.N + 1) // 2], [self.M, self.N], pre_pad=self.pre_pad)
self.unpad = self.backend.unpad
filters = filter_bank(self.M_padded, self.N_padded, self.J, self.L)
self.phi, self.psi = filters['phi'], filters['psi']