Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
#!/usr/bin/env python3
import kfp
from kfp import components
from kfp import dsl
from kfp.aws import use_aws_secret
sagemaker_hpo_op = components.load_component_from_file('../../../../components/aws/sagemaker/hyperparameter_tuning/component.yaml')
@dsl.pipeline(
name='MNIST HPO test pipeline',
description='SageMaker hyperparameter tuning job test'
)
def hpo_test(region='us-west-2',
hpo_job_name='HPO-kmeans-sample',
image='',
algorithm_name='K-Means',
training_input_mode='File',
metric_definitions='{}',
strategy='Bayesian',
metric_name='test:msd',
metric_type='Minimize',
early_stopping_type='Off',
static_parameters='{"k": "10", "feature_dim": "784"}',
#!/usr/bin/env python3
import kfp
from kfp import components
from kfp import dsl
from kfp.aws import use_aws_secret
sagemaker_workteam_op = components.load_component_from_file('../../../../components/aws/sagemaker/workteam/component.yaml')
sagemaker_gt_op = components.load_component_from_file('../../../../components/aws/sagemaker/ground_truth/component.yaml')
sagemaker_train_op = components.load_component_from_file('../../../../components/aws/sagemaker/train/component.yaml')
@dsl.pipeline(
name='Ground Truth image classification test pipeline',
description='SageMaker Ground Truth job test'
)
def ground_truth_test(region='us-west-2',
team_name='ground-truth-demo-team',
team_description='Team for mini image classification labeling job',
user_pool='',
user_groups='',
client_id='',
ground_truth_train_job_name='mini-image-classification-demo-train',
ground_truth_validation_job_name='mini-image-classification-demo-validation',
ground_truth_label_attribute_name='category',
ground_truth_train_manifest_location='s3://your-bucket-name/mini-image-classification/ground-truth-demo/train.manifest',
ground_truth_validation_manifest_location='s3://your-bucket-name/mini-image-classification/ground-truth-demo/validation.manifest',
#!/usr/bin/env python3
import kfp
from kfp import components
from kfp import dsl
from kfp import gcp
from kfp.aws import use_aws_secret
emr_create_cluster_op = components.load_component_from_file('../../../../components/aws/emr/create_cluster/component.yaml')
emr_submit_spark_job_op = components.load_component_from_file('../../../../components/aws/emr/submit_spark_job/component.yaml')
emr_delete_cluster_op = components.load_component_from_file('../../../../components/aws/emr/delete_cluster/component.yaml')
@dsl.pipeline(
name='Titanic Suvival Prediction Pipeline',
description='Predict survival on the Titanic'
)
def titanic_suvival_prediction(region='us-west-2',
log_s3_uri="s3://kubeflow-pipeline-data/emr/titanic/logs",
cluster_name="emr-cluster",
job_name='spark-ml-trainner',
input='s3://kubeflow-pipeline-data/emr/titanic/train.csv',
output='s3://kubeflow-pipeline-data/emr/titanic/output',
jar_path='s3://kubeflow-pipeline-data/emr/titanic/titanic-survivors-prediction_2.11-1.0.jar',
main_class='com.amazonaws.emr.titanic.Titanic',
instance_type="m4.xlarge",
instance_count="3"
):
#!/usr/bin/env python3
import kfp
from kfp import components
from kfp import dsl
from kfp import gcp
from kfp.aws import use_aws_secret
emr_create_cluster_op = components.load_component_from_file('../../../../components/aws/emr/create_cluster/component.yaml')
emr_submit_spark_job_op = components.load_component_from_file('../../../../components/aws/emr/submit_spark_job/component.yaml')
emr_delete_cluster_op = components.load_component_from_file('../../../../components/aws/emr/delete_cluster/component.yaml')
@dsl.pipeline(
name='Titanic Suvival Prediction Pipeline',
description='Predict survival on the Titanic'
)
def titanic_suvival_prediction(region='us-west-2',
log_s3_uri="s3://kubeflow-pipeline-data/emr/titanic/logs",
cluster_name="emr-cluster",
job_name='spark-ml-trainner',
input='s3://kubeflow-pipeline-data/emr/titanic/train.csv',
output='s3://kubeflow-pipeline-data/emr/titanic/output',
jar_path='s3://kubeflow-pipeline-data/emr/titanic/titanic-survivors-prediction_2.11-1.0.jar',
main_class='com.amazonaws.emr.titanic.Titanic',
instance_type="m4.xlarge",
#!/usr/bin/env python3
import kfp
from kfp import components
from kfp import dsl
from kfp import gcp
from kfp.aws import use_aws_secret
emr_create_cluster_op = components.load_component_from_file('../../../../components/aws/emr/create_cluster/component.yaml')
emr_submit_spark_job_op = components.load_component_from_file('../../../../components/aws/emr/submit_spark_job/component.yaml')
emr_delete_cluster_op = components.load_component_from_file('../../../../components/aws/emr/delete_cluster/component.yaml')
@dsl.pipeline(
name='Titanic Suvival Prediction Pipeline',
description='Predict survival on the Titanic'
)
def titanic_suvival_prediction(region='us-west-2',
log_s3_uri="s3://kubeflow-pipeline-data/emr/titanic/logs",
cluster_name="emr-cluster",
job_name='spark-ml-trainner',
input='s3://kubeflow-pipeline-data/emr/titanic/train.csv',
output='s3://kubeflow-pipeline-data/emr/titanic/output',
jar_path='s3://kubeflow-pipeline-data/emr/titanic/titanic-survivors-prediction_2.11-1.0.jar',
main_class='com.amazonaws.emr.titanic.Titanic',
instance_type="m4.xlarge",
instance_count="3"
#!/usr/bin/env python3
import kfp
from kfp import components
from kfp import dsl
from kfp.aws import use_aws_secret
sagemaker_hpo_op = components.load_component_from_file('../../../../components/aws/sagemaker/hyperparameter_tuning/component.yaml')
sagemaker_train_op = components.load_component_from_file('../../../../components/aws/sagemaker/train/component.yaml')
sagemaker_model_op = components.load_component_from_file('../../../../components/aws/sagemaker/model/component.yaml')
sagemaker_deploy_op = components.load_component_from_file('../../../../components/aws/sagemaker/deploy/component.yaml')
sagemaker_batch_transform_op = components.load_component_from_file('../../../../components/aws/sagemaker/batch_transform/component.yaml')
@dsl.pipeline(
name='MNIST Classification pipeline',
description='MNIST Classification using KMEANS in SageMaker'
)
def mnist_classification(region='us-west-2',
image='174872318107.dkr.ecr.us-west-2.amazonaws.com/kmeans:1',
training_input_mode='File',
hpo_strategy='Bayesian',
hpo_metric_name='test:msd',
hpo_metric_type='Minimize',
hpo_early_stopping_type='Off',
#!/usr/bin/env python3
import kfp
from kfp import components
from kfp import dsl
from kfp.aws import use_aws_secret
sagemaker_hpo_op = components.load_component_from_file('../../../../components/aws/sagemaker/hyperparameter_tuning/component.yaml')
sagemaker_train_op = components.load_component_from_file('../../../../components/aws/sagemaker/train/component.yaml')
sagemaker_model_op = components.load_component_from_file('../../../../components/aws/sagemaker/model/component.yaml')
sagemaker_deploy_op = components.load_component_from_file('../../../../components/aws/sagemaker/deploy/component.yaml')
sagemaker_batch_transform_op = components.load_component_from_file('../../../../components/aws/sagemaker/batch_transform/component.yaml')
@dsl.pipeline(
name='MNIST Classification pipeline',
description='MNIST Classification using KMEANS in SageMaker'
)
def mnist_classification(region='us-west-2',
image='174872318107.dkr.ecr.us-west-2.amazonaws.com/kmeans:1',
training_input_mode='File',
hpo_strategy='Bayesian',
hpo_metric_name='test:msd',
hpo_metric_type='Minimize',
hpo_early_stopping_type='Off',
hpo_static_parameters='{"k": "10", "feature_dim": "784"}',
hpo_integer_parameters='[{"Name": "mini_batch_size", "MinValue": "500", "MaxValue": "600"}, {"Name": "extra_center_factor", "MinValue": "10", "MaxValue": "20"}]',
hpo_continuous_parameters='[]',
hpo_categorical_parameters='[{"Name": "init_method", "Values": ["random", "kmeans++"]}]',
def pipeline(gcs_bucket_name=''):
bq2gcs_op = comp.load_component_from_file(BQ2GCS_YAML)
bq2gcs = bq2gcs_op(
input_bucket=gcs_bucket_name,
).apply(gcp.use_gcp_secret('user-gcp-sa'))
trainjob_op = comp.load_component_from_file(TRAINJOB_YAML)
trainjob = trainjob_op(
input_bucket=gcs_bucket_name,
).apply(gcp.use_gcp_secret('user-gcp-sa'))
deploymodel_op = comp.load_component_from_file(DEPLOYMODEL_YAML)
deploymodel = deploymodel_op(
input_bucket=gcs_bucket_name,
).apply(gcp.use_gcp_secret('user-gcp-sa'))
trainjob.after(bq2gcs)
deploymodel.after(trainjob)