How to use the kedro.runner.ParallelRunner function in kedro

To help you get started, we’ve selected a few kedro examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github quantumblacklabs / kedro / tests / contrib / io / pyspark / test_spark_data_set.py View on Github external
filepath=str(tmp_path / "data.pkl"), backend="pickle"
        )
        catalog = DataCatalog(
            data_sets={
                "spark_in": spark_in,
                "pickle": pickle_data,
                "spark_out": spark_out,
            }
        )
        pipeline = Pipeline(
            [
                node(identity, "spark_in", "pickle"),
                node(identity, "pickle", "spark_out"),
            ]
        )
        runner = ParallelRunner()

        pattern = r"{0} cannot be serialized. {1} can only be used with serializable data".format(
            str(sample_spark_df.__class__), str(pickle_data.__class__.__name__)
        )

        with pytest.raises(DataSetError, match=pattern):
            runner.run(pipeline, catalog)
github quantumblacklabs / kedro / tests / context / test_context.py View on Github external
def test_parallel_run_arg(self, dummy_context, dummy_dataframe, caplog):
        dummy_context.catalog.save("cars", dummy_dataframe)
        dummy_context.run(runner=ParallelRunner())

        log_msgs = [record.getMessage() for record in caplog.records]
        log_names = [record.name for record in caplog.records]
        assert "kedro.runner.parallel_runner" in log_names
        assert "Pipeline execution completed successfully." in log_msgs
github quantumblacklabs / kedro / tests / runner / test_parallel_runner.py View on Github external
def test_decorate_pipeline(self, fan_out_fan_in, catalog):
        catalog.add_feed_dict(dict(A=42))
        result = ParallelRunner().run(fan_out_fan_in.decorate(log_time), catalog)
        assert "Z" in result
        assert len(result["Z"]) == 3
        assert result["Z"] == (42, 42, 42)
github quantumblacklabs / kedro / tests / runner / test_parallel_runner.py View on Github external
def test_release_transcoded(self):
        runner = ParallelRunner()
        log = runner._manager.list()

        pipeline = Pipeline(
            [node(source, None, "ds@save"), node(sink, "ds@load", None)]
        )
        catalog = DataCatalog(
            {
                "ds@save": LoggingDataSet(log, "save"),
                "ds@load": LoggingDataSet(log, "load"),
            }
        )

        ParallelRunner().run(pipeline, catalog)

        # we want to see both datasets being released
        assert list(log) == [("release", "save"), ("load", "load"), ("release", "load")]
github quantumblacklabs / kedro / tests / runner / test_parallel_runner.py View on Github external
def test_dont_release_inputs_and_outputs(self):
        runner = ParallelRunner()
        log = runner._manager.list()

        pipeline = Pipeline(
            [node(identity, "in", "middle"), node(identity, "middle", "out")]
        )
        catalog = DataCatalog(
            {
                "in": runner._manager.LoggingDataSet(log, "in", "stuff"),
                "middle": runner._manager.LoggingDataSet(log, "middle"),
                "out": runner._manager.LoggingDataSet(log, "out"),
            }
        )
        ParallelRunner().run(pipeline, catalog)

        # we don't want to see release in or out in here
        assert list(log) == [("load", "in"), ("load", "middle"), ("release", "middle")]
github quantumblacklabs / kedro / tests / runner / test_parallel_runner.py View on Github external
def test_decorated_nodes(self, decorated_fan_out_fan_in, catalog):
        catalog.add_feed_dict(dict(A=42))
        result = ParallelRunner().run(decorated_fan_out_fan_in, catalog)
        assert "Z" in result
        assert len(result["Z"]) == 3
        assert result["Z"] == (42, 42, 42)
github quantumblacklabs / kedro / tests / contrib / io / pyspark / test_spark_data_set.py View on Github external
def test_parallel_runner(self, spark_in, spark_out):
        """Test ParallelRunner with SparkDataSet load and save.
        """
        catalog = DataCatalog(data_sets={"spark_in": spark_in, "spark_out": spark_out})
        pipeline = Pipeline([node(identity, "spark_in", "spark_out")])
        runner = ParallelRunner()
        result = runner.run(pipeline, catalog)
        # 'spark_out' is saved in 'tmp_path/input', so the result of run should be empty
        assert not result
github quantumblacklabs / kedro / tests / runner / test_parallel_runner.py View on Github external
def test_release_transcoded(self):
        runner = ParallelRunner()
        log = runner._manager.list()

        pipeline = Pipeline(
            [node(source, None, "ds@save"), node(sink, "ds@load", None)]
        )
        catalog = DataCatalog(
            {
                "ds@save": LoggingDataSet(log, "save"),
                "ds@load": LoggingDataSet(log, "load"),
            }
        )

        ParallelRunner().run(pipeline, catalog)

        # we want to see both datasets being released
        assert list(log) == [("release", "save"), ("load", "load"), ("release", "load")]
github quantumblacklabs / kedro / tests / template / test_kedro_cli.py View on Github external
assert not result.exit_code

        fake_load_context.return_value.run.assert_called_once_with(
            tags=(),
            runner=mocker.ANY,
            node_names=(),
            from_nodes=[],
            to_nodes=[],
            from_inputs=[],
            load_versions={},
            pipeline_name=None,
        )

        assert isinstance(
            fake_load_context.return_value.run.call_args_list[0][1]["runner"],
            ParallelRunner,
        )
github quantumblacklabs / kedro / tests / runner / test_parallel_runner.py View on Github external
def test_task_validation(self, fan_out_fan_in, catalog):
        """ParallelRunner cannot serialize the lambda function."""
        catalog.add_feed_dict(dict(A=42))
        pipeline = Pipeline([fan_out_fan_in, node(lambda x: x, "Z", "X")])
        with pytest.raises(AttributeError):
            ParallelRunner().run(pipeline, catalog)