Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def rollout(env, policy, flag=False, wait=False, render=False):
observations, actions, rewards = [], [], []
if flag:
env = env._wrapped_env
if wait:
import ipdb; ipdb.set_trace()
observation = env.reset()
total = len(env.simulation.cloth.shapepts)
while not env.traj_index >= len(env.trajectory) - 1:
if render:
env.render()
action = policy.get_action(np.array(observation))[0]
actions.append(action)
observations.append(observation)
observation, reward, terminal, _ = env.step(action)
rewards.append(reward)
print(rewards)
print "Score", total - len(env.simulation.cloth.shapepts)
return env.simulation.cloth.evaluate()
if (successor1.variable.base == 'sp' and successor1.variable.offset > 0) or \
(successor1.variable.base == 'bp' and successor1.variable.offset < 0):
# yes it's copied onto the stack!
argument_to_local[argument_variable] = successor1
# if the register is eax, and it's not killed later, it might be the return value of this function
# in that case, we cannot eliminate the instruction that moves stack argument to that register
if successors0[0].variable.reg == self.project.arch.registers['eax'][0]:
killers = [ s for _, s, data in out_edges if 'type' in data and data['type'] == 'kill']
if not killers:
# it might be the return value
argument_register_as_retval.add(argument_variable)
else:
# TODO:
import ipdb; ipdb.set_trace()
#import pprint
#pprint.pprint(argument_to_local, width=160)
# find local correspondence that are not modified throughout this function
redundant_stack_variables = [ ]
for argument, local_var in argument_to_local.items():
# local_var cannot be killed anywhere
out_edges = data_graph.out_edges(local_var, data=True)
consuming_locs = [ ]
for _, consumer, data in out_edges:
consuming_locs.append(consumer.location)
if 'type' in data and data['type'] == 'kill':
DATASET_PATH = DATASET_PATH_REL + "mujoco_data_pusher3dof_big_backl.h5"
# DATASET_PATH = "/Tmp/alitaiga/mujoco_data_pusher3dof_big_backl.h5"
batch_size = 1
train_data = H5PYDataset(
DATASET_PATH, which_sets=('train',), sources=('s_transition_obs','r_transition_obs', 'obs', 'actions')
)
stream_train = DataStream(train_data, iteration_scheme=SequentialScheme(train_data.num_examples, train_data.num_examples))
valid_data = H5PYDataset(
DATASET_PATH, which_sets=('valid',), sources=('s_transition_obs','r_transition_obs', 'obs', 'actions')
)
stream_valid = DataStream(valid_data, iteration_scheme=SequentialScheme(train_data.num_examples, batch_size))
iterator = stream_train.get_epoch_iterator(as_dict=True)
data = next(iterator)
import ipdb; ipdb.set_trace()
## Max, min mean std obs:
[2.56284189, 2.3500247, 2.39507723, 7.40329409, 9.20471668, 15.37792397]
[-0.12052701, -0.17479207, -0.73818409, -1.25026512, -3.95599413, -4.73272848]
[2.25090551, 1.94997263, 1.6495719, 0.43379614, 0.3314755, 0.43763939]
[0.5295766 , 0.51998389, 0.57609886, 1.35480666, 1.40806067, 2.43865967]
# max_obs = np.zeros((6,))
# max_sim = np.zeros((6,))
# max_real = np.zeros((6,))
# max_act = np.zeros((3,))
# max_cor = np.zeros((6,))
# j = 0
#
# for i, data in enumerate(iterator):
error = True
if abs(Xi-y[0]) > 0.0001:
print("---------- Bad Initial Position --------------------")
error = True
if abs(Xf-y[-1]) > 0.0001:
print("---------- Bad Final Position --------------------")
error = True
if abs(Vi-yd[0]) > 0.0001:
print("---------- Bad Initial Velocity --------------------")
error = True
if abs(yd[-1]) > 0.0001:
print("---------- Bad Final Velocity --------------------")
error = True
if error:
import ipdb; ipdb.set_trace()
return (y, yd, ydd, t_traj)
context.base_prices = context.candles_close
cash = context.portfolio.cash
amount = context.portfolio.positions[context.coin_pair].amount
price = data.current(context.coin_pair, 'price')
# order_id = None
context.last_base_price = context.base_prices[-2]
context.curr_base_price = context.base_prices[-1]
# TA calculations
# ...
# Sanity checks
# assert cash >= 0
if cash < 0:
import ipdb
ipdb.set_trace() # BREAKPOINT
print_facts(context)
print_facts_telegram(context)
# Order management
# net_shares = 0
if context.counter == 2:
pass
brute_shares = (cash / price) * context.parameters.BUY_PERCENTAGE
share_commission_fee = brute_shares * context.parameters.COMMISSION_FEE
net_shares = brute_shares - share_commission_fee
buy_order_id = order(context.coin_pair, net_shares)
print(buy_order_id)
if context.counter == 3:
pass
def g(*args, **kwargs):
try :
f(*args,**kwargs)
except Exception, e :
import ipdb
ipdb.set_trace()
return g
def pred_probs(f_log_probs, prepare_data, options, iterator, verbose=True):
probs = []
n_done = 0
for x in iterator:
n_done += len(x)
x, x_mask = prepare_data(x, n_words=options['n_words'])
pprobs = f_log_probs(x, x_mask)
for pp in pprobs:
probs.append(pp)
if numpy.isnan(numpy.mean(probs)):
import ipdb; ipdb.set_trace()
if verbose:
print >>sys.stderr, '%d samples computed'%(n_done)
return numpy.array(probs)
if __name__ == '__main__':
g = build_bbn(
f_prize_door,
f_guest_door,
f_monty_door,
domains=dict(
prize_door=['A', 'B', 'C'],
guest_door=['A', 'B', 'C'],
monty_door=['A', 'B', 'C']))
fg = build_monty_factor_graph_from_bbn(g)
fg2 = g.convert_to_factor_graph()
fg.q()
import ipdb; ipdb.set_trace()
fg2.q()
def debug():
"""Debug hook to allow entering debug mode in compiled pex.
Run it as PEX_MODULE=wrapper.wrapper_main:debug
"""
import warnings
try:
import ipdb as pdb
except ImportError:
warnings.warn('ipdb not available, using pdb')
import pdb
pdb.set_trace()
main()