Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
for elements_ in path_:
info = []
for nested_ in elements_.xpath(".//td"):
info.append(nested_.text_content())
if info[0] == 'No se encontraron resultados':
raise IndexError("ERR#0010: etf information unavailable or not found.")
etf_date = datetime.datetime.strptime(info[0].replace('.', '-'), '%d-%m-%Y')
etf_close = float(info[1].replace('.', '').replace(',', '.'))
etf_open = float(info[2].replace('.', '').replace(',', '.'))
etf_high = float(info[3].replace('.', '').replace(',', '.'))
etf_low = float(info[4].replace('.', '').replace(',', '.'))
result.insert(len(result), Data(etf_date, etf_open, etf_high, etf_low, etf_close, None, etf_currency))
if order in ['ascending', 'asc']:
result = result[::-1]
elif order in ['descending', 'desc']:
result = result
logger.info('Data parsing process finished...')
if as_json is True:
json_ = {'name': name,
'recent':
[value.etf_as_json() for value in result]
}
return json.dumps(json_, sort_keys=False)
elif as_json is False:
stock_close = float(info[1].replace('.', '').replace(',', '.'))
stock_open = float(info[2].replace('.', '').replace(',', '.'))
stock_high = float(info[3].replace('.', '').replace(',', '.'))
stock_low = float(info[4].replace('.', '').replace(',', '.'))
stock_volume = 0
if info[5].__contains__('K'):
stock_volume = int(float(info[5].replace('K', '').replace('.', '').replace(',', '.')) * 1000)
elif info[5].__contains__('M'):
stock_volume = int(float(info[5].replace('M', '').replace('.', '').replace(',', '.')) * 1000000)
elif info[5].__contains__('B'):
stock_volume = int(float(info[5].replace('B', '').replace('.', '').replace(',', '.')) * 1000000000)
result.insert(len(result),
Data(stock_date, stock_open, stock_high, stock_low,
stock_close, stock_volume, stock_currency))
if data_flag is True:
if order in ['ascending', 'asc']:
result = result[::-1]
elif order in ['descending', 'desc']:
result = result
if as_json is True:
json_ = {'name': name,
'historical':
[value.equity_as_json() for value in result]
}
final.append(json_)
elif as_json is False:
df = pd.DataFrame.from_records([value.equity_to_dict() for value in result])
stock_close = float(info[1].replace('.', '').replace(',', '.'))
stock_open = float(info[2].replace('.', '').replace(',', '.'))
stock_high = float(info[3].replace('.', '').replace(',', '.'))
stock_low = float(info[4].replace('.', '').replace(',', '.'))
stock_volume = 0
if info[5].__contains__('K'):
stock_volume = int(float(info[5].replace('K', '').replace('.', '').replace(',', '.')) * 1000)
elif info[5].__contains__('M'):
stock_volume = int(float(info[5].replace('M', '').replace('.', '').replace(',', '.')) * 1000000)
elif info[5].__contains__('B'):
stock_volume = int(float(info[5].replace('B', '').replace('.', '').replace(',', '.')) * 1000000000)
result.insert(len(result),
Data(stock_date, stock_open, stock_high, stock_low,
stock_close, stock_volume, stock_currency))
if order in ['ascending', 'asc']:
result = result[::-1]
elif order in ['descending', 'desc']:
result = result
logger.info('Data parsing process finished...')
if as_json is True:
json_ = {'name': name,
'recent':
[value.equity_as_json() for value in result]
}
return json.dumps(json_, sort_keys=False)
if interval_counter < interval_limit:
data_flag = False
else:
raise IndexError("ERR#0010: etf information unavailable or not found.")
else:
data_flag = True
if data_flag is True:
etf_date = datetime.datetime.strptime(info[0].replace('.', '-'), '%d-%m-%Y')
etf_close = float(info[1].replace('.', '').replace(',', '.'))
etf_open = float(info[2].replace('.', '').replace(',', '.'))
etf_high = float(info[3].replace('.', '').replace(',', '.'))
etf_low = float(info[4].replace('.', '').replace(',', '.'))
result.insert(len(result),
Data(etf_date, etf_open, etf_high, etf_low, etf_close, None, etf_currency))
if data_flag is True:
if order in ['ascending', 'asc']:
result = result[::-1]
elif order in ['descending', 'desc']:
result = result
if as_json is True:
json_ = {'name': name,
'historical':
[value.etf_as_json() for value in result]
}
final.append(json_)
elif as_json is False:
df = pd.DataFrame.from_records([value.etf_to_dict() for value in result])
for elements_ in path_:
info = []
for nested_ in elements_.xpath(".//td"):
info.append(nested_.text_content())
if info[0] == 'No se encontraron resultados':
raise IndexError("ERR#0008: fund information unavailable or not found.")
fund_date = datetime.datetime.strptime(info[0].replace('.', '-'), '%d-%m-%Y')
fund_close = float(info[1].replace('.', '').replace(',', '.'))
fund_open = float(info[2].replace('.', '').replace(',', '.'))
fund_high = float(info[3].replace('.', '').replace(',', '.'))
fund_low = float(info[4].replace('.', '').replace(',', '.'))
result.insert(len(result), Data(fund_date, fund_open, fund_high, fund_low,
fund_close, None, fund_currency))
if order in ['ascending', 'asc']:
result = result[::-1]
elif order in ['descending', 'desc']:
result = result
logger.info('Data parsing process finished...')
if as_json is True:
json_ = {'name': name,
'recent':
[value.fund_as_json() for value in result]
}
return json.dumps(json_, sort_keys=False)
if interval_counter < interval_limit:
data_flag = False
else:
raise IndexError("ERR#0008: fund information unavailable or not found.")
else:
data_flag = True
if data_flag is True:
fund_date = datetime.datetime.strptime(info[0].replace('.', '-'), '%d-%m-%Y')
fund_close = float(info[1].replace('.', '').replace(',', '.'))
fund_open = float(info[2].replace('.', '').replace(',', '.'))
fund_high = float(info[3].replace('.', '').replace(',', '.'))
fund_low = float(info[4].replace('.', '').replace(',', '.'))
result.insert(len(result), Data(fund_date, fund_open, fund_high, fund_low,
fund_close, None, fund_currency))
if data_flag is True:
if order in ['ascending', 'asc']:
result = result[::-1]
elif order in ['descending', 'desc']:
result = result
if as_json is True:
json_ = {'name': name,
'historical':
[value.fund_as_json() for value in result]
}
final.append(json_)
elif as_json is False: