Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
# use either of the formats below to specifiy address of display computer
sender = imagezmq.ImageSender(connect_to='tcp://jeff-macbook:5555')
# sender = imagezmq.ImageSender(connect_to='tcp://192.168.1.190:5555')
# optionally, turn on the LED area lighting
use_led = False # set to True or False as needed
# optionally, filp the image vertically
flip = True # set to True of False as needed
if use_led:
GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)
GPIO.output(18, True) # turn on LEDs
rpi_name = socket.gethostname() # send RPi hostname with each image
picam = VideoStream(usePiCamera=True).start()
time.sleep(2.0) # allow camera sensor to warm up
jpeg_quality = 95 # 0 to 100, higher is better quality, 95 is cv2 default
try:
while True: # send images as stream until Ctrl-C
image = picam.read()
if flip:
image = cv2.flip(image, -1)
ret_code, jpg_buffer = cv2.imencode(
".jpg", image, [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_quality])
sender.send_jpg(rpi_name, jpg_buffer)
except (KeyboardInterrupt, SystemExit):
pass # Ctrl-C was pressed to end program
except Exception as ex:
print('Python error with no Exception handler:')
print('Traceback error:', ex)
traceback.print_exc()
h=1
#os.startfile('chrome')
#os.system("%systemroot%\system32\scrnsave.scr /s")
#exit()
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
#if j==15:
# break
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# do a bit of cleanup
VideoStream(src=0).stop()
cv2.destroyAllWindows()
# "sofa", "train", "tvmonitor"]
CLASSES = ["background", "person"
# ,"face"
]
# IGNORE = set(["person"])
IGNORE = set()
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# initialize the video stream, allow the cammera sensor to warmup,
# and initialize the FPS counter
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(2.0)
fps = FPS().start()
# loop over the frames from the video stream
while True:
# grab the frame from the threaded video stream and resize it
# to have a maximum width of 400 pixels
frame = vs.read()
# frame = imutils.resize(frame, width=400)
# grab the frame dimensions and convert it to a blob
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),
0.007843, (300, 300), 127.5)
# pass the blob through the network and obtain the detections and
# initialize dlib's face detector (HOG-based) and then create
# the facial landmark predictor
print("Loading facial landmark predictor...")
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])
# grab the indexes of the facial landmarks for the left and
# right eye, respectively
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
print("Starting live video stream...")
vs = VideoStream(src=0).start()
fileStream = False
time.sleep(1.0)
currentCount = 0
mouse = Mouse()
face_cascade = cv2.CascadeClassifier('res/haarcascade_frontalface_default.xml')
while True:
# if this is a file video stream, then we need to check if
# there any more frames left in the buffer to process
if fileStream and not vs.more():
break
# grab the frame from the threaded video file stream, resize
from utils import detector_utils as detector_utils
ap = argparse.ArgumentParser()
ap.add_argument('-d', '--display', dest='display', type=int,
default=1, help='Display the detected images using OpenCV. This reduces FPS')
args = vars(ap.parse_args())
detection_graph, sess = detector_utils.load_inference_graph()
if __name__ == '__main__':
# Detection confidence threshold to draw bounding box
score_thresh = 0.60
# Get stream from webcam and set parameters)
vs = VideoStream().start()
# max number of hands we want to detect/track
num_hands_detect = 1
# Used to calculate fps
start_time = datetime.datetime.now()
num_frames = 0
im_height, im_width = (None, None)
try:
while True:
# Read Frame and process
frame = vs.read()
frame = cv2.resize(frame, (320, 240))
scaphoidBaseline = [0,0,0]
scaphoidBasecalc = [0,0,0]
trapezoidBaseline = [0,0,0]
trapezoidBasecalc = [0,0,0]
triquetrumBaseline = [0,0,0]
triquetrumBasecalc = [0,0,0]
# Counter to name Point Cloud files for each frame
framePC = 1
# Boolean to determine if a frame is bad (missing at least one dot)
badframe = 0
# If a video path was not supplied, grab the reference to the Intel RealSense D435 stream
if not args.get("video", False):
vs = VideoStream(src=0).start()
# Otherwise, grab a reference to the video file
else:
vsbool = 1
# OPTIONAL code for using Default Webcam/Facetime Camera
# NOTE: If used, comment out the later "vs = color_image" in line ################################################134 (this line number has changed and is no longer correct)
#vs = cv2.VideoCapture(args["video"])
#vs = cv2.VideoCapture(-1)
# Allow the camera or video file to warm up
time.sleep(2.0)
# Print start time for log
dt = datetime.now()
print("Time Started: " + str(dt))
# initialize dlib's face detector (HOG-based) and then create
# the facial landmark predictor
print("[INFO] loading facial landmark predictor...")
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])
# grab the indexes of the facial landmarks for the left and
# right eye, respectively
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
# start the video stream thread
print("[INFO] starting video stream thread...")
print("[INFO] print q to quit...")
if args['video'] == "camera":
vs = VideoStream(src=0).start()
fileStream = False
else:
vs = FileVideoStream(args["video"]).start()
fileStream = True
time.sleep(1.0)
# loop over frames from the video stream
while True:
# if this is a file video stream, then we need to check if
# there any more frames left in the buffer to process
if fileStream and not vs.more():
break
# grab the frame from the threaded video file stream, resize
# it, and convert it to grayscale
resolution=(640, 480), fr=30):
"""
Only the PiCamera will allow you to set its resolution at creation
time. In other cases (i.e. usb camera or file), the function
VideoCapture.set() needs to be used post-creation to set resolution.
But this will not work uniformly for all types of cameras. As a
result, the frame must be resized manually to your desired resolution.
"""
self.vsource = source
self.target_width = resolution[0]
self.target_height = resolution[1]
if self.vsource == 'file':
self.stream = FileVideoStream(path, queueSize=qs).start()
elif self.vsource == 'usbcamera':
self.stream = VideoStream(src=src, usePiCamera=False).start()
elif self.vsource == 'picamera':
self.stream = VideoStream(usePiCamera=True, resolution=resolution,
framerate=fr).start()
if self.vsource == 'picamera':
# read one frame to determine the resolution of the camera
#frame = self.read()
#self.native_width = frame.shape[0]
#self.native_height = frame.shape[1]
# this isn't right but can't figure out the picarmera
self.native_width = resolution[0]
self.native_height = resolution[1]
else:
self.native_width = self.get(cv2.CAP_PROP_FRAME_WIDTH)
self.native_height = self.get(cv2.CAP_PROP_FRAME_HEIGHT)
#!/usr/bin/env python2
import cv2
import imutils
from imutils.video import VideoStream
import time, sys
vs = VideoStream(resolution=(320, 240)).start()
time.sleep(1.0)
while(True):
frame = vs.read()
frame = imutils.resize(frame, width=640, height=480)
#cv2.imshow('frame',frame)
res = bytearray(cv2.imencode(".jpeg", frame)[1])
size = str(len(res))
sys.stdout.write("Content-Type: image/jpeg\r\n")
sys.stdout.write("Content-Length: " + size + "\r\n\r\n")
sys.stdout.write( res )
sys.stdout.write("\r\n")
sys.stdout.write("--informs\r\n")
def recognize_camera (src=0,method="hog",encoding_path=default_path_encodings,record_path=None):
# initialize the video stream, then allow the camera sensor to warm up
print("[INFO] starting video stream...")
vs = VideoStream(src).start()
writer = None
time.sleep(2.0)
# start the FPS throughput estimator
#fps = FPS().start()
fps = 1
#iterator for the object detection to be activated
#i = 0
#q = Queue()
frame = vs.read()
if record_path != None:
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter(record_path, fourcc, fps,(frame.shape[1], frame.shape[0]), True)
# loop over frames from the video file stream
while True:
# grab the frame from the threaded video stream
frame = vs.read()