Maintenance
Commit Frequency
Further analysis of the maintenance status of I2MC based on released PyPI versions cadence, the repository activity, and other data points determined that its maintenance is Sustainable.
We found that I2MC demonstrates a positive version release cadence with at least one new version released in the past 3 months.
In the past month we didn't find any pull request activity or change in issues status has been detected for the GitHub repository.
Figure 1. Number of fixations, mean fixation duration and SD of fixation duration for the MATLAB and Python I2MC implementations using the RMS noise data set from the original I2MC paper. I2MC is the original published version of I2MC. I2MC2019 is a slightly modified version (the latest version from the original I2MC repository as of this writing [v2.0.3]). _python stands for the Python implementation in this repository. _nc stands for No Chebychev filtering. For more information on this specific analysis see Figure 3 in the original I2MC paper and the corresponding text.
Figure 2. Classified fixations for episodes of example eye-tracking data using the MATLAB and Python I2MC implementations. I2MC is the original published version of I2MC. I2MC2019 is a slightly modified version (the latest version from the original I2MC repository as of this writing [v2.0.3]). _python stands from the Python implementation in this repository. _nc stands for No Chebychev filtering. For more information on this specific analysis see Figure 8 in the original I2MC paper and the corresponding text.