Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def vulnerability_json(parent_id, parent_type, vuln=None):
vuln_dict = {
'metadata': st.fixed_dictionaries({
'update_time': st.floats(),
'update_user': st.one_of(st.none(), st.text()),
'update_action': st.integers(),
'creator': st.text(),
'create_time': st.floats(),
'update_controller_action': st.text(),
'owner': st.one_of(st.none(), st.text())}),
'obj_id': st.integers(),
'owner': st.one_of(st.none(), st.text()),
'parent': st.sampled_from([parent_id]),
'parent_type': st.sampled_from([parent_type]),
'type': st.one_of(
st.sampled_from([
"Vulnerability", "Invalid", None]),
st.text()
),
'ws': st.one_of(st.none(), st.text()),
'confirmed': st.booleans(),
'data': st.one_of(st.none(), st.text()),
'desc': st.one_of(st.none(), st.text()),
'easeofresolution': st.sampled_from(['trivial',
with pytest.raises(UnicodeDecodeError) as excinfo:
json.dumps((u"\u1234", "\xc0"), ensure_ascii=False)
assert str(excinfo.value).startswith(
"'ascii' codec can't decode byte 0xc0 ")
with pytest.raises(UnicodeDecodeError) as excinfo:
json.dumps(("\xc0", u"\u1234"), ensure_ascii=False)
assert str(excinfo.value).startswith(
"'ascii' codec can't decode byte 0xc0 ")
def test_issue2191():
assert is_(json.dumps(u"xxx", ensure_ascii=False), u'"xxx"')
jsondata = strategies.recursive(
strategies.none() |
strategies.booleans() |
strategies.floats(allow_nan=False) |
strategies.text(),
lambda children: strategies.lists(children) |
strategies.dictionaries(strategies.text(), children))
@given(jsondata)
def test_roundtrip(d):
assert json.loads(json.dumps(d)) == d
def test_focal_loss(num_datum, num_classes, alpha, gamma, data, grad):
scores = data.draw(hnp.arrays(shape=(num_datum, num_classes),
dtype=float,
elements=st.floats(1, 100)))
assume((abs(scores.sum(axis=1)) > 0.001).all())
scores_mygrad = Tensor(scores)
scores_nn = Tensor(scores)
truth = np.zeros((num_datum, num_classes))
targets = data.draw(st.tuples(*(st.integers(0, num_classes - 1) for i in range(num_datum))))
truth[range(num_datum), targets] = 1
probs = softmax(scores_mygrad)
mygrad_focal_loss = sum(truth * (-alpha * (1 - probs + 1e-14)**gamma * log(probs))) / num_datum
mygrad_focal_loss.backward(grad)
nn_loss = softmax_focal_loss(scores_nn, targets, alpha=alpha, gamma=gamma)
| st.lists(st.floats(max_value=10)).filter(
lambda x: len(x) != 2 or any(i <= 0 for i in x)
)
),
)
def test_bad_figsize(plotter: LivePlot, bad_size):
with pytest.raises(ValueError):
plotter.figsize = bad_size
@given(st.floats(constrains.LANDAU_MIN_MPV,
constrains.LANDAU_MAX_MPV,
allow_nan=False,
allow_infinity=False),
st.floats(constrains.LANDAU_MIN_ETA,
constrains.LANDAU_MAX_ETA,
allow_nan=False,
allow_infinity=False),
st.floats(constrains.LANDAU_MIN_A,
constrains.LANDAU_MAX_A,
allow_nan=False,
allow_infinity=False))
def test_landau_stability(self, mpv, eta, A):
''' Check Landau outputs for same input parameters '''
x = np.linspace(mpv - 5 * eta, mpv + 5 * eta, 1000)
y_1 = pylandau.landau(x, mpv=mpv, eta=eta, A=A)
y_2 = pylandau.landau(x, mpv=mpv, eta=eta, A=A)
@given(floats())
def test_decimal_from_float(f):
d = Decimal(f)
if isfinite(f) and d.is_finite():
try:
# PDF is limited to ~5 sig figs
decstr = str(d.quantize(Decimal('1.000000')))
except InvalidOperation:
return # PDF doesn't support exponential notation
try:
py_d = Object.parse(decstr)
except RuntimeError as e:
if 'overflow' in str(e) or 'underflow' in str(e):
py_d = Object.parse(str(f))
assert isclose(py_d, d, abs_tol=1e-5), (d, f.hex())
else:
from cattr import Converter
from cattr._compat import bytes, is_bare, is_union_type, unicode
from cattr.converters import NoneType
from . import (
dicts_of_primitives,
enums_of_primitives,
lists_of_primitives,
primitive_strategies,
seqs_of_primitives,
)
from ._compat import change_type_param
ints_and_type = tuples(integers(), just(int))
floats_and_type = tuples(floats(allow_nan=False), just(float))
strs_and_type = tuples(text(), just(unicode))
bytes_and_type = tuples(binary(), just(bytes))
primitives_and_type = one_of(
ints_and_type, floats_and_type, strs_and_type, bytes_and_type
)
mut_set_types = sampled_from([Set, MutableSet])
set_types = one_of(mut_set_types, just(FrozenSet))
def create_generic_type(generic_types, param_type):
"""Create a strategy for generating parameterized generic types."""
return one_of(
generic_types,
generic_types.map(lambda t: t[Any]),
def tensor(draw, shapes=None, elements=None, qparams=None):
if isinstance(shapes, SearchStrategy):
_shape = draw(shapes)
else:
_shape = draw(st.sampled_from(shapes))
if qparams is None:
if elements is None:
elements = st.floats(-1e6, 1e6)
X = draw(stnp.arrays(dtype=np.float32, elements=elements, shape=_shape))
assume(not (np.isnan(X).any() or np.isinf(X).any()))
return X, None
qparams = draw(qparams)
if elements is None:
min_value, max_value = _get_valid_min_max(qparams)
elements = st.floats(min_value, max_value)
X = draw(stnp.arrays(dtype=np.float32, elements=elements, shape=_shape))
return X, qparams
def define_strategy_for_float_Range(specifier, settings):
return st.floats(specifier.start, specifier.end)