Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
self.data = data
elif is_dask(data):
datatype = 'dask'
self.data = data.persist() if persist else data
elif is_streamz(data):
datatype = 'streamz'
self.data = data.example
self.stream_type = data._stream_type
streaming = True
self.cb = data
if data._stream_type == 'updating':
self.stream = Pipe(data=self.data)
else:
self.stream = Buffer(data=self.data, length=backlog, index=False)
data.stream.gather().sink(self.stream.send)
elif is_xarray(data):
import xarray as xr
z = kwds.get('z')
if z is None:
if isinstance(data, xr.Dataset):
z = list(data.data_vars)[0]
else:
z = data.name or 'value'
if gridded and isinstance(data, xr.Dataset) and not isinstance(z, list):
data = data[z]
self.z = z
ignore = (groupby or []) + (by or []) + grid
coords = [c for c in data.coords if data[c].shape != ()
and c not in ignore]
dims = [c for c in data.dims if data[c].shape != ()
and c not in ignore]
def _process_gridded_args(self, data, x, y, z):
data = self.data if data is None else data
x = x or self.x
y = y or self.y
z = z or self.kwds.get('z')
if is_xarray(data):
import xarray as xr
if isinstance(data, xr.DataArray):
data = data.to_dataset(name=data.name or 'value')
if is_tabular(data):
if self.use_index and any(c for c in self.hover_cols if
c in self.indexes and
c not in data.columns):
data = data.reset_index()
# calculate any derived time
dimensions = []
for dimension in [x, y, self.by, self.hover_cols]:
if dimension is not None:
dimensions.extend(dimension if isinstance(dimension, list) else [dimension])
not_found = [dim for dim in dimensions if dim not in self.variables]
_, data = process_derived_datetime_pandas(data, not_found, self.indexes)
def _process_symmetric(self, symmetric, clim, check_symmetric_max):
if symmetric is not None or clim is not None:
return symmetric
if is_xarray(self.data):
# chunks mean it's lazily loaded; nanquantile will eagerly load
if self.data.chunks:
return False
data = self.data[self.z]
if is_xarray_dataarray(data):
if data.size > check_symmetric_max:
return False
else:
return False
elif self._color_dim:
data = self.data[self._color_dim]
else:
return
cmin = np.nanquantile(data, 0.05)