Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
tile_position=tile_position,
format=large_image.tilesource.TILE_FORMAT_NUMPY,
**it_kwargs)
# get tile image
im_tile = tile_info['tile'][:, :, :3]
# perform color normalization
im_nmzd = htk_cnorm.reinhard(im_tile,
args.reference_mu_lab,
args.reference_std_lab,
src_mu=src_mu_lab,
src_sigma=src_sigma_lab)
# perform color decovolution
w = cli_utils.get_stain_matrix(args)
im_stains = htk_cdeconv.color_deconvolution(im_nmzd, w).Stains
im_nuclei_stain = im_stains[:, :, 0].astype(np.float)
# segment nuclear foreground
im_nuclei_fgnd_mask = im_nuclei_stain < args.foreground_threshold
# segment nuclei
im_nuclei_seg_mask = htk_nuclear.detect_nuclei_kofahi(
im_nuclei_stain,
im_nuclei_fgnd_mask,
args.min_radius,
args.max_radius,
args.min_nucleus_area,
args.local_max_search_radius
# Read Input Image
print('>> Reading input image')
print(args.inputImageFile)
ts = large_image.getTileSource(args.inputImageFile)
im_input = ts.getRegion(
format=large_image.tilesource.TILE_FORMAT_NUMPY,
**utils.get_region_dict(args.region, args.maxRegionSize, ts)
)[0]
# Create stain matrix
print('>> Creating stain matrix')
w = utils.get_stain_matrix(args)
print(w)
# Perform color deconvolution
print('>> Performing color deconvolution')
im_stains = htk_cd.color_deconvolution(im_input, w).Stains
# write stain images to output
print('>> Outputting individual stain images')
print(args.outputStainImageFile_1)
skimage.io.imsave(args.outputStainImageFile_1, im_stains[:, :, 0])
print(args.outputStainImageFile_2)
skimage.io.imsave(args.outputStainImageFile_2, im_stains[:, :, 1])
print(args.outputStainImageFile_3)
def main(args):
args = utils.splitArgs(args)
args.snmf.I_0 = numpy.array(args.snmf.I_0)
print(">> Starting Dask cluster and sampling pixels")
utils.create_dask_client(args.dask)
sample = utils.sample_pixels(args.sample)
# Create stain matrix
print('>> Creating stain matrix')
args.snmf.w_init = utils.get_stain_matrix(args.stains, 2)
print(args.snmf.w_init)
# Perform color deconvolution
print('>> Performing color deconvolution')
w_est = htk_cdeconv.rgb_separate_stains_xu_snmf(sample.T, **vars(args.snmf))
w_est = htk_cdeconv.complement_stain_matrix(w_est)
with open(args.returnParameterFile, 'w') as f:
for i, stain in enumerate(w_est.T):
f.write('stainColor_{} = {}\n'.format(i+1, ','.join(map(str, stain))))
tile_position=tile_position,
format=large_image.tilesource.TILE_FORMAT_NUMPY,
**it_kwargs)
# get tile image
im_tile = tile_info['tile'][:, :, :3]
# perform color normalization
im_nmzd = htk_cnorm.reinhard(im_tile,
args.reference_mu_lab,
args.reference_std_lab,
src_mu=src_mu_lab,
src_sigma=src_sigma_lab)
# perform color decovolution
w = cli_utils.get_stain_matrix(args)
im_stains = htk_cdeconv.color_deconvolution(im_nmzd, w).Stains
im_nuclei_stain = im_stains[:, :, 0].astype(np.float)
# segment nuclear foreground
im_nuclei_fgnd_mask = im_nuclei_stain < args.foreground_threshold
# segment nuclei
im_nuclei_seg_mask = htk_nuclear.detect_nuclei_kofahi(
im_nuclei_stain,
im_nuclei_fgnd_mask,
args.min_radius,
args.max_radius,
args.min_nucleus_area,
args.local_max_search_radius