How to use the h2o.cloudPerfH2O.message function in h2o

To help you get started, we’ve selected a few h2o examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github h2oai / h2o-2 / py / testdir_release / c3 / test_c3_exec_copy.py View on Github external
pollTimeoutSecs = 120
        retryDelaySecs = 10

        for trial, (csvFilepattern, csvFilename, totalBytes, timeoutSecs) in enumerate(csvFilenameList):
                csvPathname = importFolderPath + "/" + csvFilepattern

                if DO_DOUBLE_IMPORT:
                    (importResult, importPattern) = h2i.import_only(bucket=bucket, path=csvPathname, schema='local')
                    importFullList = importResult['files']
                    importFailList = importResult['fails']
                    print "\n Problem if this is not empty: importFailList:", h2o.dump_json(importFailList)

                # this accumulates performance stats into a benchmark log over multiple runs 
                # good for tracking whether we're getting slower or faster
                h2o.cloudPerfH2O.change_logfile(csvFilename)
                h2o.cloudPerfH2O.message("")
                h2o.cloudPerfH2O.message("Parse " + csvFilename + " Start--------------------------------")

                start = time.time()
                parseResult = h2i.import_parse(bucket=bucket, path=csvPathname, schema='local',
                    hex_key="A.hex", timeoutSecs=timeoutSecs, 
                    retryDelaySecs=retryDelaySecs,
                    pollTimeoutSecs=pollTimeoutSecs,
                    benchmarkLogging=benchmarkLogging)
                elapsed = time.time() - start
                print "Parse #", trial, "completed in", "%6.2f" % elapsed, "seconds.", \
                    "%d pct. of timeout" % ((elapsed*100)/timeoutSecs)

                print "Parse result['destination_key']:", parseResult['destination_key']
                h2o_cmd.columnInfoFromInspect(parseResult['destination_key'], exceptionOnMissingValues=False)

                fileMBS = (totalBytes/1e6)/elapsed
github h2oai / h2o-2 / py / testdir_release / c3 / test_c3_fvec.py View on Github external
retryDelaySecs = 10

        for trial, (csvFilepattern, csvFilename, totalBytes, timeoutSecs) in enumerate(csvFilenameList):
                csvPathname = importFolderPath + "/" + csvFilepattern

                if DO_DOUBLE_IMPORT:
                    (importResult, importPattern) = h2i.import_only(bucket=bucket, path=csvPathname, schema='local')
                    importFullList = importResult['files']
                    importFailList = importResult['fails']
                    print "\n Problem if this is not empty: importFailList:", h2o.dump_json(importFailList)

                # this accumulates performance stats into a benchmark log over multiple runs 
                # good for tracking whether we're getting slower or faster
                h2o.cloudPerfH2O.change_logfile(csvFilename)
                h2o.cloudPerfH2O.message("")
                h2o.cloudPerfH2O.message("Parse " + csvFilename + " Start--------------------------------")

                start = time.time()
                parseResult = h2i.import_parse(bucket=bucket, path=csvPathname, schema='local',
                    hex_key=csvFilename + ".hex", timeoutSecs=timeoutSecs, 
                    retryDelaySecs=retryDelaySecs,
                    pollTimeoutSecs=pollTimeoutSecs,
                    benchmarkLogging=benchmarkLogging)
                elapsed = time.time() - start
                print "Parse #", trial, "completed in", "%6.2f" % elapsed, "seconds.", \
                    "%d pct. of timeout" % ((elapsed*100)/timeoutSecs)

                print "Parse result['destination_key']:", parseResult['destination_key']
                h2o_cmd.columnInfoFromInspect(parseResult['destination_key'], exceptionOnMissingValues=False)

                if totalBytes is not None:
                    fileMBS = (totalBytes/1e6)/elapsed
github h2oai / h2o-2 / py / testdir_multi_jvm / test_parse_manyfiles_fvec.py View on Github external
for trial in range(trialMax):
                # (importResult, importPattern) = h2i.import_only(path=importFolderPath+"/*")

                if DO_IMPORT_CHECK:
                    for i in range(2):
                        csvPathname = importFolderPath + "/" + csvFilepattern
                        (importResult, importPattern) = h2i.import_only(bucket='home-0xdiag-datasets', 
                                path=csvPathname, schema='local', timeoutSecs=timeoutSecs)

                        importFullList = importResult['files']
                        importFailList = importResult['fails']
                        print "\n Problem if this is not empty: importFailList:", h2o.dump_json(importFailList)
                        # creates csvFilename.hex from file in importFolder dir 

                h2o.cloudPerfH2O.change_logfile(csvFilename)
                h2o.cloudPerfH2O.message("")
                h2o.cloudPerfH2O.message("Parse " + csvFilename + " Start--------------------------------")
                csvPathname = importFolderPath + "/" + csvFilepattern
                start = time.time()
                parseResult = h2i.import_parse(bucket='home-0xdiag-datasets', path=csvPathname, schema='local',
                    hex_key=csvFilename + ".hex", timeoutSecs=timeoutSecs, 
                    retryDelaySecs=retryDelaySecs,
                    pollTimeoutSecs=pollTimeoutSecs,
                    noPoll=noPoll,
                    benchmarkLogging=benchmarkLogging)
                elapsed = time.time() - start
                print "Parse#", trial, parseResult['destination_key'], "took", elapsed, "seconds",\
                    "%d pct. of timeout" % ((elapsed*100)/timeoutSecs)

                inspect = h2o_cmd.runInspect(None, parseResult['destination_key'], timeoutSecs=360)
                h2o_cmd.infoFromInspect(inspect, csvPathname)
github h2oai / h2o-2 / py / testdir_release / c3 / test_c3_exec_copy.py View on Github external
hex_key="A.hex", timeoutSecs=timeoutSecs, 
                    retryDelaySecs=retryDelaySecs,
                    pollTimeoutSecs=pollTimeoutSecs,
                    benchmarkLogging=benchmarkLogging)
                elapsed = time.time() - start
                print "Parse #", trial, "completed in", "%6.2f" % elapsed, "seconds.", \
                    "%d pct. of timeout" % ((elapsed*100)/timeoutSecs)

                print "Parse result['destination_key']:", parseResult['destination_key']
                h2o_cmd.columnInfoFromInspect(parseResult['destination_key'], exceptionOnMissingValues=False)

                fileMBS = (totalBytes/1e6)/elapsed
                msg = '{!s} jvms, {!s}GB heap, {:s} {:s} {:6.2f} MB/sec for {:.2f} secs'.format(
                    len(h2o.nodes), h2o.nodes[0].java_heap_GB, csvFilepattern, csvFilename, fileMBS, elapsed)
                print msg
                h2o.cloudPerfH2O.message(msg)
                h2o_cmd.checkKeyDistribution()

                # are the unparsed keys slowing down exec?
                h2i.delete_keys_at_all_nodes(pattern="manyfile")

                execExpr = 'B.hex=A.hex'
                h2e.exec_expr(execExpr=execExpr, timeoutSecs=180)
                h2o_cmd.checkKeyDistribution()

                execExpr = 'C.hex=B.hex'
                h2e.exec_expr(execExpr=execExpr, timeoutSecs=180)
                h2o_cmd.checkKeyDistribution()

                execExpr = 'D.hex=C.hex'
                h2e.exec_expr(execExpr=execExpr, timeoutSecs=180)
                h2o_cmd.checkKeyDistribution()
github h2oai / h2o-2 / py / testdir_release / c3 / test_c3_fvec.py View on Github external
pollTimeoutSecs = 120
        retryDelaySecs = 10

        for trial, (csvFilepattern, csvFilename, totalBytes, timeoutSecs) in enumerate(csvFilenameList):
                csvPathname = importFolderPath + "/" + csvFilepattern

                if DO_DOUBLE_IMPORT:
                    (importResult, importPattern) = h2i.import_only(bucket=bucket, path=csvPathname, schema='local')
                    importFullList = importResult['files']
                    importFailList = importResult['fails']
                    print "\n Problem if this is not empty: importFailList:", h2o.dump_json(importFailList)

                # this accumulates performance stats into a benchmark log over multiple runs 
                # good for tracking whether we're getting slower or faster
                h2o.cloudPerfH2O.change_logfile(csvFilename)
                h2o.cloudPerfH2O.message("")
                h2o.cloudPerfH2O.message("Parse " + csvFilename + " Start--------------------------------")

                start = time.time()
                parseResult = h2i.import_parse(bucket=bucket, path=csvPathname, schema='local',
                    hex_key=csvFilename + ".hex", timeoutSecs=timeoutSecs, 
                    retryDelaySecs=retryDelaySecs,
                    pollTimeoutSecs=pollTimeoutSecs,
                    benchmarkLogging=benchmarkLogging)
                elapsed = time.time() - start
                print "Parse #", trial, "completed in", "%6.2f" % elapsed, "seconds.", \
                    "%d pct. of timeout" % ((elapsed*100)/timeoutSecs)

                print "Parse result['destination_key']:", parseResult['destination_key']
                h2o_cmd.columnInfoFromInspect(parseResult['destination_key'], exceptionOnMissingValues=False)

                if totalBytes is not None:
github h2oai / h2o-2 / py / testdir_single_jvm / test_GLM2_many_cols_real.py View on Github external
csvFilename = 'syn_' + str(SEEDPERFILE) + "_" + str(rowCount) + 'x' + str(colCount) + '.csv'
            csvPathname = SYNDATASETS_DIR + '/' + csvFilename

            print "Creating random", csvPathname
            write_syn_dataset(csvPathname, rowCount, colCount, SEEDPERFILE)

            start = time.time()
            parseResult = h2i.import_parse(path=csvPathname, schema='put', hex_key=hex_key, timeoutSecs=60)
            elapsed = time.time() - start
            print "Parse result['destination_key']:", parseResult['destination_key']

            algo = "Parse"
            l = '{:d} jvms, {:d}GB heap, {:s} {:s} {:6.2f} secs'.format(
                len(h2o.nodes), tryHeap, algo, csvFilename, elapsed)
            print l
            h2o.cloudPerfH2O.message(l)

            # We should be able to see the parse result?
            inspect = h2o_cmd.runInspect(None, parseResult['destination_key'])
            print "\n" + csvFilename

            y = colCount
            # just limit to 2 iterations..assume it scales with more iterations
            kwargs = {
                'response': y,
                'max_iter': 2, 
                'family': 'binomial',
                'lambda': 1.e-4,
                'alpha': 0.6,
                'n_folds': 1,
                'beta_epsilon': 1.e-4,
            }
github h2oai / h2o-2 / py / testdir_single_jvm / test_GBM_many_cols_enum.py View on Github external
# Parse (train)****************************************
            parseTrainResult = h2i.import_parse(bucket=None, path=csvPathname, schema='put', header=0,
                hex_key=hex_key, timeoutSecs=timeoutSecs, doSummary=False)

            elapsed = time.time() - start
            print "train parse end on ", csvPathname, 'took', elapsed, 'seconds',\
                "%d pct. of timeout" % ((elapsed*100)/timeoutSecs)
            print "train parse result:", parseTrainResult['destination_key']

            # Logging to a benchmark file
            algo = "Parse"
            l = '{:d} jvms, {:d}GB heap, {:s} {:s} {:6.2f} secs'.format(
                len(h2o.nodes), h2o.nodes[0].java_heap_GB, algo, csvFilename, elapsed)
            print l
            h2o.cloudPerfH2O.message(l)

            inspect = h2o_cmd.runInspect(key=parseTrainResult['destination_key'])
            print "\n" + csvPathname, \
                "    numRows:", "{:,}".format(inspect['numRows']), \
                "    numCols:", "{:,}".format(inspect['numCols'])
            numRows = inspect['numRows']
            numCols = inspect['numCols']
            ### h2o_cmd.runSummary(key=parsTraineResult['destination_key'])

            # GBM(train iterate)****************************************
            ntrees = 10
            for max_depth in [5,10,20,40]:
                params = {
                    'learn_rate': .2,
                    'nbins': 1024,
                    'ntrees': ntrees,
github h2oai / h2o-2 / py / testdir_0xdata_slow / test_benchmark_import.py View on Github external
# pop open a browser on the cloud
            ### h2b.browseTheCloud()

            # to avoid sticky ports?
            ### base_port += 2

            for trial in range(trialMax):
                csvPathname = importFolderPath + "/" + csvFilepattern
                (importResult, importPattern) = h2i.import_only(bucket=bucket, path=csvPathname, schema='local')
                importFullList = importResult['files']
                importFailList = importResult['fails']
                print "\n Problem if this is not empty: importFailList:", h2o.dump_json(importFailList)
                # creates csvFilename.hex from file in importFolder dir 

                h2o.cloudPerfH2O.change_logfile(csvFilename)
                h2o.cloudPerfH2O.message("")
                h2o.cloudPerfH2O.message("Parse " + csvFilename + " Start--------------------------------")
                csvPathname = importFolderPath + "/" + csvFilepattern
                start = time.time()
                parseResult = h2i.import_parse(bucket=bucket, path=csvPathname, schema='local',
                    hex_key=csvFilename + ".hex", timeoutSecs=timeoutSecs, 
                    retryDelaySecs=retryDelaySecs,
                    pollTimeoutSecs=pollTimeoutSecs,
                    noPoll=noPoll,
                    benchmarkLogging=benchmarkLogging)

                if noPoll:
                    if (i+1) < len(csvFilenameList):
                        time.sleep(1)
                        h2o.check_sandbox_for_errors()
                        (csvFilepattern, csvFilename, totalBytes2, timeoutSecs) = csvFilenameList[i+1]
                        csvPathname = importFolderPath + "/" + csvFilepattern
github h2oai / h2o-2 / py / testdir_release / c2 / test_c2_fvec.py View on Github external
retryDelaySecs = 10

        for trial, (csvFilepattern, csvFilename, totalBytes, timeoutSecs) in enumerate(csvFilenameList):
                csvPathname = importFolderPath + "/" + csvFilepattern


                # double import still causing problems?
                # (importResult, importPattern) = h2i.import_only(bucket=bucket, path=csvPathname, schema='local')
                # importFullList = importResult['files']
                # importFailList = importResult['fails']
                # print "\n Problem if this is not empty: importFailList:", h2o.dump_json(importFailList)

                # this accumulates performance stats into a benchmark log over multiple runs 
                # good for tracking whether we're getting slower or faster
                h2o.cloudPerfH2O.change_logfile(csvFilename)
                h2o.cloudPerfH2O.message("")
                h2o.cloudPerfH2O.message("Parse " + csvFilename + " Start--------------------------------")

                start = time.time()
                parseResult = h2i.import_parse(bucket=bucket, path=csvPathname, schema='local',
                    hex_key=csvFilename + ".hex", timeoutSecs=timeoutSecs, 
                    retryDelaySecs=retryDelaySecs,
                    pollTimeoutSecs=pollTimeoutSecs,
                    benchmarkLogging=benchmarkLogging)
                elapsed = time.time() - start
                print "Parse #", trial, "completed in", "%6.2f" % elapsed, "seconds.", \
                    "%d pct. of timeout" % ((elapsed*100)/timeoutSecs)

                print "Parse result['destination_key']:", parseResult['destination_key']
                h2o_cmd.columnInfoFromInspect(parseResult['destination_key'], exceptionOnMissingValues=False)

                if totalBytes is not None:
github h2oai / h2o-2 / py / testdir_release / c2 / test_c2_rel.py View on Github external
'n_folds': 1, 
                        'family': 'binomial',
                        'alpha': 0.2, 
                        'lambda': 1e-5
                    }

                    start = time.time()
                    glm = h2o_cmd.runGLM(parseResult=parseResult, timeoutSecs=timeoutSecs, **GLMkwargs)
                    elapsed = time.time() - start
                    h2o.check_sandbox_for_errors()

                    h2o_glm.simpleCheckGLM(self, glm, None, **GLMkwargs)
                    msg = '{:d} jvms, {:d}GB heap, {:s} {:s} GLM: {:6.2f} secs'.format(
                        len(h2o.nodes), h2o.nodes[0].java_heap_GB, csvFilepattern, csvFilename, elapsed)
                    print msg
                    h2o.cloudPerfH2O.message(msg)

                h2o_cmd.checkKeyDistribution()