How to use the gym-unity.gym_unity.envs.unity_env.ActionFlattener function in gym-unity

To help you get started, we’ve selected a few gym-unity examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Unity-Technologies / ml-agents / gym-unity / gym_unity / envs / unity_env.py View on Github external
raise UnityGymException(
                "There can only be one stacked vector observation in a UnityEnvironment "
                "if it is wrapped in a gym."
            )

        # Check for number of agents in scene.
        initial_info = self._env.reset()[self.brain_name]
        self._check_agents(len(initial_info.agents))

        # Set observation and action spaces
        if brain.vector_action_space_type == "discrete":
            if len(brain.vector_action_space_size) == 1:
                self._action_space = spaces.Discrete(brain.vector_action_space_size[0])
            else:
                if flatten_branched:
                    self._flattener = ActionFlattener(brain.vector_action_space_size)
                    self._action_space = self._flattener.action_space
                else:
                    self._action_space = spaces.MultiDiscrete(
                        brain.vector_action_space_size
                    )

        else:
            if flatten_branched:
                logger.warning(
                    "The environment has a non-discrete action space. It will "
                    "not be flattened."
                )
            high = np.array([1] * brain.vector_action_space_size[0])
            self._action_space = spaces.Box(-high, high, dtype=np.float32)
        high = np.array([np.inf] * brain.vector_observation_space_size)
        self.action_meanings = brain.vector_action_descriptions
github Unity-Technologies / marathon-envs / gym-unity / gym_unity / envs / unity_env.py View on Github external
raise UnityGymException(
                "There can only be one stacked vector observation in a UnityEnvironment "
                "if it is wrapped in a gym."
            )

        # Check for number of agents in scene.
        initial_info = self._env.reset()[self.brain_name]
        self._check_agents(len(initial_info.agents))

        # Set observation and action spaces
        if brain.vector_action_space_type == "discrete":
            if len(brain.vector_action_space_size) == 1:
                self._action_space = spaces.Discrete(brain.vector_action_space_size[0])
            else:
                if flatten_branched:
                    self._flattener = ActionFlattener(brain.vector_action_space_size)
                    self._action_space = self._flattener.action_space
                else:
                    self._action_space = spaces.MultiDiscrete(
                        brain.vector_action_space_size
                    )

        else:
            if flatten_branched:
                logger.warning(
                    "The environment has a non-discrete action space. It will "
                    "not be flattened."
                )
            high = np.array([1] * brain.vector_action_space_size[0])
            self._action_space = spaces.Box(-high, high, dtype=np.float32)
        high = np.array([np.inf] * brain.vector_observation_space_size)
        self.action_meanings = brain.vector_action_descriptions

gym-unity

Unity Machine Learning Agents Gym Interface

Apache-2.0
Latest version published 3 years ago

Package Health Score

63 / 100
Full package analysis