Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def rebuild_flagged(self, dir, msg):
"""
Default rebuild method to decode a base64 image
"""
im = preprocessing_utils.decode_base64_to_image(msg)
timestamp = datetime.datetime.now()
filename = f'output_{timestamp.strftime("%Y-%m-%d-%H-%M-%S")}.png'
im.save(f'{dir}/{filename}', 'PNG')
return filename
output = {'input': interface.input_interface.rebuild_flagged(flag_dir, msg['data']['input_data']),
'output': interface.output_interface.rebuild_flagged(flag_dir, msg['data']['output_data']),
'message': msg['data']['message']}
with open(os.path.join(flag_dir, FLAGGING_FILENAME), 'a+') as f:
f.write(json.dumps(output))
f.write("\n")
#TODO(abidlabs): clean this up
elif self.path == "/api/auto/rotation":
from gradio import validation_data, preprocessing_utils
import numpy as np
self._set_headers()
data_string = self.rfile.read(int(self.headers["Content-Length"]))
msg = json.loads(data_string)
img_orig = preprocessing_utils.decode_base64_to_image(msg["data"])
img_orig = img_orig.convert('RGB')
img_orig = img_orig.resize((224, 224))
flag_dir = os.path.join(directory_to_serve, FLAGGING_DIRECTORY)
os.makedirs(flag_dir, exist_ok=True)
for deg in range(-180, 180+45, 45):
img = img_orig.rotate(deg)
img_array = np.array(img) / 127.5 - 1
prediction = interface.predict(np.expand_dims(img_array, axis=0))
processed_output = interface.output_interface.postprocess(prediction)
output = {'input': interface.input_interface.save_to_file(flag_dir, img),
'output': interface.output_interface.rebuild_flagged(
flag_dir, {'data': {'output': processed_output}}),
'message': f'rotation by {deg} degrees'}
with open(os.path.join(flag_dir, FLAGGING_FILENAME), 'a+') as f:
f.write(json.dumps(output))
f.write("\n")
# Prepare return json dictionary.
self.wfile.write(json.dumps({}).encode())
elif self.path == "/api/auto/lighting":
from gradio import validation_data, preprocessing_utils
import numpy as np
from PIL import ImageEnhance
self._set_headers()
data_string = self.rfile.read(int(self.headers["Content-Length"]))
msg = json.loads(data_string)
img_orig = preprocessing_utils.decode_base64_to_image(msg["data"])
img_orig = img_orig.convert('RGB')
img_orig = img_orig.resize((224, 224))
enhancer = ImageEnhance.Brightness(img_orig)
flag_dir = os.path.join(directory_to_serve, FLAGGING_DIRECTORY)
os.makedirs(flag_dir, exist_ok=True)
for i in range(9):
img = enhancer.enhance(i/4)
img_array = np.array(img) / 127.5 - 1
prediction = interface.predict(np.expand_dims(img_array, axis=0))
processed_output = interface.output_interface.postprocess(prediction)
output = {'input': interface.input_interface.save_to_file(flag_dir, img),
'output': interface.output_interface.rebuild_flagged(
flag_dir, {'data': {'output': processed_output}}),
'message': f'brighting adjustment by a factor of {i}'}
def preprocess(self, inp):
"""
Default preprocessing method for the SketchPad is to convert the sketch to black and white and resize 28x28
"""
im = preprocessing_utils.decode_base64_to_image(inp)
im = im.convert('L')
if self.invert_colors:
im = ImageOps.invert(im)
im = preprocessing_utils.resize_and_crop(im, (self.image_width, self.image_height))
if self.flatten:
array = np.array(im).flatten().reshape(1, self.image_width * self.image_height)
else:
array = np.array(im).flatten().reshape(1, self.image_width, self.image_height)
array = array * self.scale + self.shift
array = array.astype(self.dtype)
return array
output = {'input': interface.input_interface.rebuild_flagged(flag_dir, msg),
'output': interface.output_interface.rebuild_flagged(flag_dir, msg),
'message': msg['data']['message']}
with open(os.path.join(flag_dir, FLAGGING_FILENAME), 'a+') as f:
f.write(json.dumps(output))
f.write("\n")
#TODO(abidlabs): clean this up
elif self.path == "/api/auto/rotation":
from gradio import validation_data, preprocessing_utils
import numpy as np
self._set_headers()
data_string = self.rfile.read(int(self.headers["Content-Length"]))
msg = json.loads(data_string)
img_orig = preprocessing_utils.decode_base64_to_image(msg["data"])
img_orig = img_orig.convert('RGB')
img_orig = img_orig.resize((224, 224))
flag_dir = os.path.join(directory_to_serve, FLAGGING_DIRECTORY)
os.makedirs(flag_dir, exist_ok=True)
for deg in range(-180, 180+45, 45):
img = img_orig.rotate(deg)
img_array = np.array(img) / 127.5 - 1
prediction = interface.predict(np.expand_dims(img_array, axis=0))
processed_output = interface.output_interface.postprocess(prediction)
output = {'input': interface.input_interface.save_to_file(flag_dir, img),
'output': interface.output_interface.rebuild_flagged(
flag_dir, {'data': {'output': processed_output}}),
'message': f'rotation by {deg} degrees'}
def preprocess(self, inp):
"""
By default, no pre-processing is applied to a microphone input file
"""
file_obj = preprocessing_utils.decode_base64_to_wav_file(inp)
mfcc_array = preprocessing_utils.generate_mfcc_features_from_audio_file(file_obj.name)
return mfcc_array
def rebuild_flagged(self, dir, msg):
"""
Default rebuild method to decode a base64 image
"""
inp = msg['data']['input']
im = preprocessing_utils.decode_base64_to_image(inp)
timestamp = datetime.datetime.now()
filename = f'input_{timestamp.strftime("%Y-%m-%d-%H-%M-%S")}.png'
im.save(f'{dir}/{filename}', 'PNG')
return filename
def preprocess(self, inp):
"""
Default preprocessing method for is to convert the picture to black and white and resize to be 48x48
"""
im = preprocessing_utils.decode_base64_to_image(inp)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
im = im.convert(self.image_mode)
im = preprocessing_utils.resize_and_crop(im, (self.image_width, self.image_height))
im = np.array(im).flatten()
im = im * self.scale + self.shift
if self.num_channels is None:
array = im.reshape(1, self.image_width, self.image_height)
else:
array = im.reshape(1, self.image_width, self.image_height, self.num_channels)
return array