Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def get_location(city):
location = Nominatim(timeout=int(options['geocode_timeout'])).geocode(city)
return location
def get_lat(city):
'''
Example:
location = geolocator.geocode("Chicago Illinois")
return:
Chicago, Cook County, Illinois, United States of America
location.address location.altitude location.latitude location.longitude location.point location.raw
'''
geolocator = Nominatim()
location = geolocator.geocode(city, timeout=1000)
return location.latitude
import pandas as pd
from geopy.geocoders import Nominatim
import xlsxwriter
df = pd.read_excel(r'C:\Users\Cássio Giehl\Documents\EnderecosMKT.xls')
geolocator = Nominatim(user_agent="Geolocation")
workbook = xlsxwriter.Workbook(r'C:\Users\Cássio Giehl\Documents\AddressWithLatLong.xlsx')
worksheet = workbook.add_worksheet()
bold = workbook.add_format({'bold': True})
worksheet.write('A1', 'Logradouro', bold)
worksheet.write('B1', 'Numero', bold)
worksheet.write('C1', 'Bairro', bold)
worksheet.write('D1', 'Cidade', bold)
worksheet.write('E1', 'Estado', bold)
worksheet.write('F1', 'Lat Long', bold)
worksheet.write('G1', 'Detalhamento', bold)
for i in range(0, len(df)):
local = "{}".format(df['Nome Logradouro'][i])
>>> address = reverse_geo("51.6239133", "6.9749074")
>>> address.short
'Feldhausen, Bottrop'
>>> address.full
'Movie Park Germany, 1, Warner-Allee, Kuhberg, Feldhausen, Bottrop, Regierungsbezirk Münster, Nordrhein-Westfalen, 46244, Deutschland'
>>> reverse_geo("52.518611", "13.376111").short
'Berlin Tiergarten'
:return: Address named tuple
short : string
The "sort" Address
full : string
The "full" Address
"""
geolocator = Nominatim()
location = geolocator.reverse("%s, %s" % (lat, lon))
short_address = construct_short_address(address=location.raw["address"])
return Address(short_address, location.address)
def validate_location(ctx, param, value):
if value is None:
return value
geolocator = Nominatim()
location = geolocator.geocode(value)
if location is None:
raise click.BadParameter('Location \"%s\" could not be found' % value)
return location
from girder import constants, events
from girder.utility.model_importer import ModelImporter
from girder.utility.webroot import Webroot
from girder.api.rest import Resource, loadmodel, RestException
from girder.api.describe import Description
from girder.api import access
from solr import IndexUploadedFilesText, QueryText, IndexLocationName, QueryLocationName, IndexLatLon, QueryPoints
from tika import parser
from geograpy import extraction
from geopy.geocoders import Nominatim
geolocator = Nominatim()
class GeoParserJobs(Resource):
def __init__(self):
self.resourceName = 'geoparser_jobs'
self.route('GET', ("extract_text",), self.extractText)
self.route('GET', ("find_location",), self.findLocation)
self.route('GET', ("find_lat_lon",), self.findLatlon)
self.route('GET', ("get_points",), self.getPoints)
@access.public
def extractText(self, params):
'''
Using Tika to extract text from given file
and return the text content.
def getLocations(disease, number):
#Initialize Nominatim
geolocator = Nominatim()
# Initialize Firebase Application and get user data
fb = firebase.FirebaseApplication("https://medicai-4e398.firebaseio.com/", None)
data = fb.get('/Diseases', None)
current_user = fb.get('/Users', None)[number]
total = 0
for i in data:
if i == disease:
#Get the details of user's current location
curLoc = geolocator.geocode(current_user["location"])
curLatLong = (curLoc.latitude, curLoc.longitude)
for location in data[i]:
#Get the details of each location in firebase of disease provided
import pandas as pd
import numpy as np
from aco import ACO, Graph
from plot import plot
import datetime
import pickle
import argparse
from geopy.exc import GeocoderTimedOut
from geopy.geocoders import Nominatim
import xgboost as xgb
import pprint
import matplotlib.pyplot as plt
filename = "../xgb_model.sav"
loaded_model = pickle.load(open(filename, 'rb'))
geolocator = Nominatim(user_agent="aco-application")
def time_cost_between_points(loc1, loc2, passenger_count, store_and_fwd_flag=0):
"""
Calculate the time (in minutes) between two points
using the trained XGB model
"""
# Hardcode the date to get consistent calculations
date_list = [27, 5, 2016] # May 27, 2016
year = int(date_list[2])
month = int(date_list[1])
day = int(date_list[0])
my_date = datetime.date(year, month, day)
def get_country_for(city: Text) -> Optional[Text]:
from geopy.geocoders import Nominatim
ssl_context = ssl.create_default_context()
ssl_context.check_hostname = False
ssl_context.verify_mode = ssl.CERT_NONE
geo_locator = Nominatim(ssl_context=ssl_context)
location = geo_locator.geocode(city, language="en", addressdetails=True)
if location:
return location.raw["address"].get("country")
return None
def nominatim_geocode(street_address, locality, postal_code):
query = { 'street': street_address, 'city': locality, 'postalcode': postal_code }
geolocator = Nominatim(country_bias='gb',user_agent="aliss_django")
return geolocator.geocode(query, exactly_one=True, timeout=5)