How to use the geomstats.tests.np_only function in geomstats

To help you get started, we’ve selected a few geomstats examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github geomstats / geomstats / tests / test_exponential_barycenter.py View on Github external
    @geomstats.tests.np_only
    def test_estimate_and_reach_max_iter_se(self):
        point = self.se_mat.random_uniform(1)
        estimator = ExponentialBarycenter(self.se_mat, max_iter=2)
        points = gs.array([point, point])
        estimator.fit(points)
        result = estimator.estimate_
        expected = point
        self.assertAllClose(result, expected)

        point = self.so_vec.random_uniform(1)
        estimator = ExponentialBarycenter(self.so_vec, max_iter=2)
        points = gs.array([point, point])
        estimator.fit(points)
        result = estimator.estimate_
        expected = point
        self.assertAllClose(result, expected)
github geomstats / geomstats / tests / test_riemannian_kmeans.py View on Github external
    @geomstats.tests.np_only
    def test_spd_kmeans_fit(self):
        gs.random.seed(0)
        n_points = 100
        space = spd_matrices.SPDMatrices(10)
        data = space.random_uniform(n_samples=n_points)
        metric = spd_matrices.SPDMetricAffine(10)

        kmeans = RiemannianKMeans(metric, 1, point_type='matrix')
        kmeans.fit(data)
        result = kmeans.centroids
        mean = FrechetMean(metric=metric, point_type='matrix', max_iter=100)
        mean.fit(data)
        expected = mean.estimate_
        self.assertAllClose(result, expected, atol=1e-2, rtol=1e-2)
github geomstats / geomstats / tests / test_pca.py View on Github external
    @geomstats.tests.np_only
    def test_tangent_pca(self):
        X = self.X
        tpca = TangentPCA(self.metric, n_components=gs.shape(X)[1])
        tpca.fit(X)
        self.assertEqual(tpca.n_features_, gs.shape(X)[1])
github geomstats / geomstats / tests / test_examples.py View on Github external
    @geomstats.tests.np_only
    def test_tangent_pca_s2():
        tangent_pca_h2.main()
github geomstats / geomstats / tests / test_special_euclidean.py View on Github external
    @geomstats.tests.np_only
    def test_group_log_from_identity_vectorization(self):
        n_samples = self.n_samples
        points = self.group.random_uniform(n_samples=n_samples)
        result = self.group.log_from_identity(points)

        self.assertAllClose(
            gs.shape(result),
            (n_samples, *self.group.get_point_type_shape()))
github geomstats / geomstats / tests / test_product_manifold.py View on Github external
    @geomstats.tests.np_only
    def test_regularize_vector(self):
        expected = self.space_vector.random_uniform(5)
        result = self.space_vector.regularize(expected)
        self.assertAllClose(result, expected)
github geomstats / geomstats / tests / test_backends.py View on Github external
    @geomstats.tests.np_only
    def test_powerm_vectorization(self):
        power = 2.4
        points = gs.array([[[1., 0., 0.],
                            [0., 4., 0.],
                            [0., 0., 9.]],
                           [[1., 0., 0.],
                            [0., 2.5, 1.5],
                            [0., 1.5, 2.5]]])
        result = gs.linalg.powerm(points, power)
        result = gs.linalg.powerm(result, 1. / power)
        expected = points

        self.assertAllClose(result, expected)
github geomstats / geomstats / tests / test_visualization.py View on Github external
    @geomstats.tests.np_only
    def test_plot_points_h2_poincare_half_plane(self):
        points = self.H2.random_uniform(self.n_samples)
        visualization.plot(points, space='H2_poincare_half_plane')
github geomstats / geomstats / tests / test_beta_distributions.py View on Github external
    @geomstats.tests.np_only
    def test_log_and_exp(self):
        """
        Test that the Riemannian exponential
        and the Riemannian logarithm are inverse.

        Expect their composition to give the identity function.
        """
        n_samples = self.n_samples
        gs.random.seed(123)
        base_point = self.beta.random_uniform(n_samples=n_samples, bound=5)
        point = self.beta.random_uniform(n_samples=n_samples, bound=5)
        log = self.metric.log(point, base_point, n_steps=500)
        expected = point
        result = self.metric.exp(tangent_vec=log, base_point=base_point)
        self.assertAllClose(result, expected, rtol=1e-2)
github geomstats / geomstats / tests / test_discrete_curves.py View on Github external
    @geomstats.tests.np_only
    def test_square_root_velocity_and_inverse(self):
        """Test of square_root_velocity and its inverse.

        N.B: Here curves_ab are seen as curves in R3 and not S2.
        """
        curves_ab = self.l2_metric_s2.geodesic(self.curve_a, self.curve_b)
        curves_ab = curves_ab(self.times)

        curves = curves_ab
        srv_curves = self.srv_metric_r3.square_root_velocity(curves)
        starting_points = curves[:, 0, :]
        result = self.srv_metric_r3.square_root_velocity_inverse(
            srv_curves, starting_points)
        expected = curves

        self.assertAllClose(result, expected)