Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
"""
embedding_size = model_options.get('embedding_size', 128)
filter_sizes = model_options.get('filter_sizes', [2, 3, 4])
n_filters = model_options.get('n_filters', 25)
pool_size = model_options.get('pool_size', 4)
hidden_dims = model_options.get('hidden_dims', 128)
dropout_prob = model_options.get('dropout_prob', .5)
conv_l2 = model_options.get('conv_l2', .05)
fc_l2 = model_options.get('fc_l2', .05)
balance_classes = model_options.get('balance_classes', False)
self.train_labels = pluck('label', train)
self.x_train, self.x_test = pluck('content', train), pluck('content', test)
self.y_train, self.y_test = pluck('label', train), pluck('label', test)
self.train_ids = pluck('id', train)
self.test_ids = pluck('id', test)
self.transform = DocToWordIndices().fit(self.x_train)
self.x_train = self.transform.transform(self.x_train)
self.x_test = self.transform.transform(self.x_test)
self.vocab_size = np.max(self.x_train) + 1 # vocab and classes are 0 indexed
self.n_labels = int(np.max(self.y_train)) + 1
self.y_train, self.y_test = to_categorical(self.y_train), to_categorical(self.y_test)
self.sequence_length = self.x_train.shape[1]
self.n_labels = self.y_train.shape[1]
self.balance_classes = balance_classes
conv_input = Input(shape=(self.sequence_length, embedding_size))
convs = []
def _get_addresses(self, family):
try:
return self.__cached_addresses[family]
except KeyError:
from netifaces import interfaces, ifaddresses
addresses = self.__cached_addresses[family] = set()
for interface in interfaces():
try:
ifdata = ifaddresses(interface)[family]
ifaddrs = map(lambda x: x.split("%")[0], pluck("addr",
ifdata))
addresses.update(ifaddrs)
except KeyError:
pass
return addresses
train: List of train examples
test: List of test (validation) examples
"""
embedding_size = model_options.get('embedding_size', 128)
filter_sizes = model_options.get('filter_sizes', [2, 3, 4])
n_filters = model_options.get('n_filters', 25)
pool_size = model_options.get('pool_size', 4)
hidden_dims = model_options.get('hidden_dims', 128)
dropout_prob = model_options.get('dropout_prob', .5)
conv_l2 = model_options.get('conv_l2', .05)
fc_l2 = model_options.get('fc_l2', .05)
balance_classes = model_options.get('balance_classes', False)
self.train_labels = pluck('label', train)
self.x_train, self.x_test = pluck('content', train), pluck('content', test)
self.y_train, self.y_test = pluck('label', train), pluck('label', test)
self.train_ids = pluck('id', train)
self.test_ids = pluck('id', test)
self.transform = DocToWordIndices().fit(self.x_train)
self.x_train = self.transform.transform(self.x_train)
self.x_test = self.transform.transform(self.x_test)
self.vocab_size = np.max(self.x_train) + 1 # vocab and classes are 0 indexed
self.n_labels = int(np.max(self.y_train)) + 1
self.y_train, self.y_test = to_categorical(self.y_train), to_categorical(self.y_test)
self.sequence_length = self.x_train.shape[1]
self.n_labels = self.y_train.shape[1]
self.balance_classes = balance_classes
Args:
train: List of train examples
test: List of test (validation) examples
"""
embedding_size = model_options.get('embedding_size', 128)
filter_sizes = model_options.get('filter_sizes', [2, 3, 4])
n_filters = model_options.get('n_filters', 25)
pool_size = model_options.get('pool_size', 4)
hidden_dims = model_options.get('hidden_dims', 128)
dropout_prob = model_options.get('dropout_prob', .5)
conv_l2 = model_options.get('conv_l2', .05)
fc_l2 = model_options.get('fc_l2', .05)
balance_classes = model_options.get('balance_classes', False)
self.train_labels = pluck('label', train)
self.x_train, self.x_test = pluck('content', train), pluck('content', test)
self.y_train, self.y_test = pluck('label', train), pluck('label', test)
self.train_ids = pluck('id', train)
self.test_ids = pluck('id', test)
self.transform = DocToWordIndices().fit(self.x_train)
self.x_train = self.transform.transform(self.x_train)
self.x_test = self.transform.transform(self.x_test)
self.vocab_size = np.max(self.x_train) + 1 # vocab and classes are 0 indexed
self.n_labels = int(np.max(self.y_train)) + 1
self.y_train, self.y_test = to_categorical(self.y_train), to_categorical(self.y_test)
self.sequence_length = self.x_train.shape[1]
self.n_labels = self.y_train.shape[1]
self.balance_classes = balance_classes
def group_needles(line_needles):
"""Group line needles by line. [(_, line)] -> [[_]]."""
grouped_needles = sorted(group_by(itemgetter(1), line_needles).iteritems(),
key=itemgetter(0))
return [map(itemgetter(0), ndl) for ndl in pluck(1, grouped_needles)]
def get_times(x, tau, lo, hi):
end = min(v.last_key() for v in x.values())
lo, hi = map(float, (lo, hi))
hi = hi + tau if hi + tau <= end else end
lo = lo + tau if lo + tau <= end else end
if lo > hi:
return []
elif hi == lo:
return [lo]
all_times = fn.cat(v.slice(lo, hi).items() for v in x.values())
return sorted(set(fn.pluck(0, all_times)))
#!/usr/bin/env python3
import sys, json, os, re
from funcy import pluck
seeds = json.loads(sys.stdin.read())
tags_file = sys.argv[1]
read_tags_file = open(tags_file, "r").read()
tags = json.loads(read_tags_file)
dictionary_json_key = os.environ.get('DICTIONARY_JSON_KEY') if os.environ.get('DICTIONARY_JSON_KEY') else "text"
json_key = os.environ.get('ADD_HASHTAG_JSON_KEY') if os.environ.get('ADD_HASHTAG_JSON_KEY') else "text"
regexp_or = '|'.join(list(pluck(dictionary_json_key, tags)))
regex_pattern = r'(\b(?
def iter_data(data):
if force:
return iter(data)
# Filter notes for excluding duplicates
exist_notes = self.get_notes(pluck('user_id', data))
for row in data:
user_id, body = str(row['user_id']), row['body']
if user_id not in exist_notes:
yield row
continue
bodies = map(normalize_note,
pluck('body', exist_notes[user_id]))
if normalize_note(body) not in bodies:
yield row
continue
logger.debug(
'The note with this body already exists: %r', row)
edit_api_url = 'https://api.github.com/repos/%s/%s/issues/%s' % (owner, repository, issue_number)
update = {}
if 'title' in edit:
update['title'] = edit['title']
if 'body' in edit:
update['body'] = edit['body']
if 'labels' in edit:
update['labels'] = edit['labels']
if 'remove_labels' in edit:
issue = get_issue(edit)
label_names = list(funcy.pluck('name', issue['labels']))
update['labels'] = list(set(label_names) - set(edit['remove_labels']))
res = session.post(edit_api_url, json.dumps(update))
results.append(res.json())
print(json.dumps(results))
def zip_pluck(d, *keys):
return zip(*[pluck(k, d) for k in keys])