Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
# -*- coding: utf-8 -*-
from __future__ import (division, print_function, absolute_import,
unicode_literals)
import pyfits
import numpy as np
import matplotlib.pyplot as pl
import fsps
# Measurements of cluster parameters.
tage = 10. ** (8.04 - 9)
logmass = 4.09
dist_mod = 24.5
# Set up the stellar population model.
sp = fsps.StellarPopulation(imf_type=2, dust_type=1, mwr=3.1, dust2=0.3)
# The measured magnitudes from the literature.
data = {"wfc3_f160w": 16.386,
"wfc3_f275w": 17.398,
"wfc_acs_f814w": 17.155}
# There are also a few filters that we have data for but aren't included in
# the standard FSPS install:
# "F110W": 16.877,
# "F336W": 17.349,
# "F475W": 17.762,
# Load the observed spectrum.
f = pyfits.open("DAO69.fits")
obs_spec = np.array(f[0].data, dtype=float)
f.close()
:ages:
The times at which the sfr is defined for any number of sfhs, H. Shape (H, SFR).
:time_steps:
An array of time values for which a spectrum with the given sfr is returned. Shape (T,)
:zmets:
An array of model metallicity values (range 1-22, see FSPS details) for which a spectrum with the given sfr is returned. Shape (Z,)
RETURNS:
:fsps_flux:
Fluxes at each manga wavelength, M for the number of sfhs input at each time_step and zmet combination. Shape (H*T*Z, M).
"""
sp = fsps.StellarPopulation(compute_vega_mags=False, zcontinuous=0, zmet=18, sfh=3, dust_type=2, dust2=0.2,
add_neb_emission=True, add_neb_continuum=False, imf_type=1, add_dust_emission=True, min_wave_smooth=3600, max_wave_smooth=7500, smooth_velocity=True, sigma_smooth=77.)
sp.set_tabular_sfh(age = ages, sfr=sfr)
def time_spec(params):
sps = sp.get_spectrum(tage=params[0], zmet=params[1])[1]
return sps
fsps_wave = sp.get_spectrum()[0]
fsps_spec = np.array(list(map(time_spec, list(product(time_steps, zmets)))))
manga_wave = np.load("manga_wavelengths_AA.npy")
f = interpolate.interp1d(fsps_wave, fsps_spec)
fluxes = f(manga_wave)
def newstars_gen(stars_list):
global sp
if sp is None:
sp = fsps.StellarPopulation()
#the newstars (particle type 4; so, for cosmological runs, this is all
#stars) are calculated in a separate function with just one argument so that it is can be fed
#into pool.map for multithreading.
#sp = fsps.StellarPopulation()
sp.params["tage"] = stars_list[0].age
sp.params["imf_type"] = cfg.par.imf_type
sp.params["pagb"] = cfg.par.pagb
sp.params["sfh"] = 0
sp.params["zmet"] = stars_list[0].fsps_zmet
sp.params["add_neb_emission"] = False
sp.params["add_agb_dust_model"] = cfg.par.add_agb_dust_model
sp.params['gas_logu'] = cfg.par.gas_logu
if cfg.par.FORCE_gas_logz == False:
sp.params['gas_logz'] = np.log10(stars_list[0].metals/cfg.par.solar)
if label is not None:
ax.text(0.63, 0.85, label, transform=ax.transAxes, fontsize=16)
return fig, ax
if __name__ == "__main__":
pl.rc('text', usetex=True)
pl.rc('font', family='serif')
pl.rc('axes', grid=False)
pl.rc('xtick', direction='in')
pl.rc('ytick', direction='in')
pl.rc('xtick', top=True)
pl.rc('ytick', right=True)
sps = fsps.StellarPopulation(zcontinuous=1)
pdf = PdfPages('features.pdf')
# Basic spectrum
sps.params['sfh'] = 4
sps.params['tau'] = 5.0
sps.params['logzsol'] = 0.0
sps.params['dust_type'] = 4 # kriek and Conroy
sps.params['imf_type'] = 2 #kroupa
sps.params['imf3'] = 2.3
fig, ax, spec = makefig(sps)
fig, ax = prettify(fig, ax, label="$\\tau=5$, Age$=13.7$,\n$\log Z/Z_\odot=0.0$")
pdf.savefig(fig)
pl.close(fig)
# change IMF
sps.params['imf3'] = 2.5
def calc_emline(stars_list):
print ('[SED_gen/calc_emline]: Calculating Emission Line Fluxes')
#this function is awful and redundant. itloops over just the new
#stars in the box and calculates the SEDs for the ones smaller
#than cfg.par.HII_max_age. its a bit wasteful since we already
#calculate these SEDs, but its difficult to get the file to save
#in a nice format without incl
global sp
if sp is None:
sp = fsps.StellarPopulation()
#set up arrays
#first how many young stars are there?
newstars_idx = []
for counter,star in enumerate(stars_list):
if star.age <= cfg.par.HII_max_age:
newstars_idx.append(counter)
num_newstars = len(newstars_idx)
#set up a dummy sps model just to get number of wavelengths
sp.params["tage"] = stars_list[0].age
sp.params["zmet"] = stars_list[0].fsps_zmet
sp.params["add_neb_emission"] = True
wav,spec = sp.get_spectrum()
n_emlines = len(sp.emline_wavelengths)
# This demo shows how to make a plot of the fractional contribution of differnt
# stellar mass ranges to the total spectrum, for different properties of the
# stellar population. There is also some use of the filter objects.
from itertools import product
import numpy as np
import matplotlib.pyplot as pl
import fsps
# make an SPS object with interpolation in metallicity enabled, and
# set a few parameters
sps = fsps.StellarPopulation(zcontinuous=1)
sps.params['imf_type'] = 0 # Salpeter IMF
sps.params['sfh'] = 1 # Tau model SFH
# Get a few filter transmission curves
filterlist = {'galex_fuv': 'FUV', 'galex_nuv': 'NUV', 'sdss_u': 'u',
'sdss_g': 'g', 'sdss_i': 'i', '2mass_j': 'J'}
filters = [fsps.filters.get_filter(f) for f in filterlist]
# This is the main function
def specplots(tage=10.0, const=1.0, tau=1.0, neb=False, z=0.0, savefig=True,
masslims=[1.0, 3.0, 15.0, 30.0, 120.0], **kwargs):
"""Make a number of plots showing the fraction of the total light due to
stars within certain stellar mass ranges.
:param tage:
An array of time values for which a spectrum with the given sfr is returned. Shape (T,)
:zmets:
An array of model metallicity values (range 1-22, see FSPS details) for which a spectrum with the given sfr is returned. Shape (Z,)
RETURNS:
:fsps_flux:
Fluxes at each manga wavelength, M for the number of sfhs input at each time_step and zmet combination. Shape (H*T*Z, M).
"""
time_step = [params[0]]
zmets = params[1]
ages = params[2]
sfr = params[3]
sp = fsps.StellarPopulation(compute_vega_mags=False, zcontinuous=0, zmet=18, sfh=3, dust_type=2, dust2=0.2,
add_neb_emission=True, add_neb_continuum=False, imf_type=1, add_dust_emission=True, min_wave_smooth=3600, max_wave_smooth=7500, smooth_velocity=True, sigma_smooth=77.)
sp.set_tabular_sfh(age = ages, sfr=sfr)
def time_spec(params):
sps = sp.get_spectrum(tage=params[0], zmet=params[1])[1]
return sps
fsps_wave = sp.get_spectrum()[0]
fsps_spec = np.array(list(map(time_spec, list(product(time_step, zmets)))))
manga_wave = np.load("manga_wavelengths_AA.npy")
manga_hz = c*(un.km/un.s).to(un.AA/un.s)/manga_wave
f = interpolate.interp1d(fsps_wave, fsps_spec)
fluxes = f(manga_wave)*(manga_hz/manga_wave) # Fluxes returned by FSPS are in units L_sol/Hz - MaNGA DAP needs fluxes in per AA flux units