Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
if nu >= max_users:
break
nu += 1
traj = df[[constants.LONGITUDE, constants.LATITUDE]]
if max_points is None:
di = 1
else:
di = max(1, len(traj) // max_points)
traj = traj[::di]
if nu == 1 and map_f is None:
# initialise map
center = list(np.median(traj, axis=0)[::-1])
map_f = folium.Map(location=center, zoom_start=zoom, tiles=tiles)
trajlist = traj.values.tolist()
line = LineString(trajlist)
if hex_color == -1:
color = get_color(hex_color)
else:
color = hex_color
tgeojson = folium.GeoJson(line,
name='tgeojson',
style_function=style_function(weight, color, opacity)
)
tgeojson.add_to(map_f)
if start_end_markers:
def setup(self):
"""Setup Folium Map."""
with mock.patch('branca.element.uuid4') as uuid4:
uuid4().hex = '0' * 32
attr = 'http://openstreetmap.org'
self.m = folium.Map(
location=[45.5236, -122.6750],
width=900,
height=400,
max_zoom=20,
zoom_start=4,
max_bounds=True,
attr=attr
)
self.env = Environment(loader=PackageLoader('folium', 'templates'))
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
###############################################################################
import folium; import json
map_a = folium.Map(location=[46.3014, -123.7390],
zoom_start=7,tiles='Stamen Terrain')
popup1 = folium.Popup(max_width=800,).add_child(
folium.Vega(
json.load(open('/gdata/folium/data/vis1.json')),
width=500, height=250))
folium.RegularPolygonMarker([47.3489, -124.708],
fill_color='#ff0000', radius=12, popup=popup1
).add_to(map_a)
###############################################################################
popup2 = folium.Popup(max_width=800,).add_child(
folium.Vega(
json.load(open('/gdata/folium/data/vis2.json')),
width=500, height=250))
folium.RegularPolygonMarker([44.639, -124.5339],
fill_color='#00ff00', radius=12, popup=popup2
).add_to(map_a)
def m_png():
yield folium.Map(png_enabled=True)
def test_heat_map():
np.random.seed(3141592)
data = (np.random.normal(size=(100, 2)) * np.array([[1, 1]]) +
np.array([[48, 5]])).tolist()
m = folium.Map([48., 5.], tiles='stamentoner', zoom_start=6)
hm = plugins.HeatMap(data)
m.add_child(hm)
m._repr_html_()
out = normalize(m._parent.render())
# We verify that the script import is present.
script = '' # noqa
assert script in out
# We verify that the script part is correct.
tmpl = Template("""
var {{this.get_name()}} = L.heatLayer(
{{this.data}},
{
minOpacity: {{this.min_opacity}},
def create_basemap(df):
"""Generate a basemap"""
center = [df['y'].mean(), df['x'].mean()]
m = folium.Map(center, zoom_start=10, tiles='CartoDB positron')
bounds = [[df['y'].min(), df['x'].min()], [df['y'].max(), df['x'].max()]]
m.fit_bounds(bounds)
return m
def generateMap(self, tiles, map_zoom_start=6, heatmap_radius=7,
heatmap_blur=4, heatmap_min_opacity=0.2,
heatmap_max_zoom=4):
map_data = [(coords[0], coords[1], magnitude)
for coords, magnitude in self.coordinates.items()]
# Generate map
m = folium.Map(location=self.max_coordinates,
zoom_start=map_zoom_start,
tiles=tiles)
# Generate heat map
heatmap = HeatMap(map_data,
max_val=self.max_magnitude,
min_opacity=heatmap_min_opacity,
radius=heatmap_radius,
blur=heatmap_blur,
max_zoom=heatmap_max_zoom)
m.add_child(heatmap)
return m
df['FIPS_Code'] = df['FIPS_Code'].astype(str)
def set_id(fips):
'''Modify FIPS code to match GeoJSON property'''
if fips == '0':
return None
elif len(fips) <= 4:
return ''.join(['0500000US0', fips])
else:
return ''.join(['0500000US', fips])
#Apply set_id, drop NaN
df['GEO_ID'] = df['FIPS_Code'].apply(set_id)
df = df.dropna()
map = folium.Map(location=[40, -99], zoom_start=4)
map.geo_json(geo_path=county_geo, data_out='data2.json', data=df,
columns=['GEO_ID', 'Unemployment_rate_2011'],
key_on='feature.id',
threshold_scale=[0, 5, 7, 9, 11, 13],
fill_color='YlGnBu', line_opacity=0.3,
legend_name='Unemployment Rate 2011 (%)',
topojson='objects.us_counties_20m')
embed_map(map)
#
# Blending folium with interact
#
plt.title(title)
sns.despine()
plt.savefig(self.dir_path + "/plots/" + self.city + "/cluster/" + str(sys.argv[1]) + "_pattern_" + type_of_analysis + ".png")
mask = np.logical_not(self.locations['nom'].isin(wrong_stations))
self.locations = self.locations[mask]
dflabel = pd.DataFrame({"label": kmeans.labels_}, index=df_norm.columns)
self.locations = self.locations.merge(dflabel, right_index=True, left_on='nom')
self.locations.drop_duplicates(inplace=True)
mp = folium.Map(location=self.position, zoom_start=13, tiles='cartodbpositron')
hex_colors = colors.as_hex()
for _, row in self.locations.iterrows():
folium.CircleMarker(
location=[row['lat'], row['lon']],
radius = 5,
popup = row['nom'],
color = hex_colors[row['label']],
fill = True,
fill_opacity = 0.5,
foll_color = hex_colors[row['label']]
).add_to(mp)
'''
Map the Antarctic Ice Shelf, with normal GeoJSON and TopoJSON
'''
import folium
geo_path = r'antarctic_ice_edge.json'
topo_path = r'antarctic_ice_shelf_topo.json'
ice_map = folium.Map(location=[-59.1759, -11.6016],
tiles='Mapbox Bright', zoom_start=2)
ice_map.choropleth(geo_path=geo_path)
ice_map.choropleth(geo_path=topo_path, topojson='objects.antarctic_ice_shelf')
ice_map.save('map.html')