How to use the fancyimpute.MICE function in fancyimpute

To help you get started, we’ve selected a few fancyimpute examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github iskandr / fancyimpute / test / test_mice.py View on Github external
def test_mice_row_with_low_rank_random_matrix_approximate():
    mice = MICE(n_imputations=100, impute_type='pmm', n_nearest_columns=5)
    XY_completed = mice.complete(XY_incomplete)
    _, missing_mae = reconstruction_error(
        XY,
        XY_completed,
        missing_mask,
        name="MICE (impute_type=row)")
    assert missing_mae < 0.1, "Error too high with approximate PMM method!"
github iskandr / fancyimpute / test / test_mice.py View on Github external
def test_mice_column_with_low_rank_random_matrix_approximate():
    mice = MICE(n_imputations=100, impute_type='col', n_nearest_columns=5)
    XY_completed = mice.complete(XY_incomplete)
    _, missing_mae = reconstruction_error(
        XY,
        XY_completed,
        missing_mask,
        name="MICE (impute_type=col)")
    assert missing_mae < 0.1, "Error too high with approximate column method!"
github iskandr / fancyimpute / test / test_mice.py View on Github external
def test_mice_row_with_low_rank_random_matrix():
    mice = MICE(n_imputations=100, impute_type='pmm')
    XY_completed = mice.complete(XY_incomplete)
    _, missing_mae = reconstruction_error(
        XY,
        XY_completed,
        missing_mask,
        name="MICE (impute_type=row)")
    assert missing_mae < 0.1, "Error too high with PMM method!"
github iskandr / fancyimpute / test / test_mice.py View on Github external
def test_mice_column_with_low_rank_random_matrix():
    mice = MICE(n_imputations=100, impute_type='col')
    XY_completed = mice.complete(XY_incomplete)
    _, missing_mae = reconstruction_error(
        XY,
        XY_completed,
        missing_mask,
        name="MICE (impute_type=col)")
    assert missing_mae < 0.1, "Error too high with column method!"
github 1900zyh / 3D-Human-Body-Shape / src / reshaper.py View on Github external
def test(self, flag, data):
    if (flag == 1).sum() == self.data.m_num:
      return data
    else:
      solver = MICE()
      return self.imputate(flag, data, solver)
github DanielSola / mimic-iii-project / services / preprocessing_service.py View on Github external
def impute_missing_values(numerical_features):
    imputed_numerical_features = pd.DataFrame(MICE().complete(numerical_features));
    imputed_numerical_features.columns = numerical_features.columns;
    imputed_numerical_features.set_index(numerical_features.index, inplace = True);
    
    return imputed_numerical_features;
github MizioAnd / PortfolioTimeSeriesAnalysis / two_sigma_financial_modelling.py View on Github external
def estimate_by_mice(df):
        df_estimated_var = df.copy()
        random.seed(129)
        mice = MICE()  # model=RandomForestClassifier(n_estimators=100))
        res = mice.complete(np.asarray(df.values, dtype=float))
        df_estimated_var.loc[:, df.columns] = res[:][:]
        return df_estimated_var
github 1900zyh / 3D-Human-Body-Shape / src / reshaper.py View on Github external
def get_predict(self, flag, in_data):
    output = in_data.copy()
    output.shape = (utils.M_NUM, 1)
    output[~flag] = np.nan
    solver = MICE()
    tmp = self.t_measure.copy()
    tmp = np.column_stack((tmp, output)).transpose()
    tmp = solver.complete(tmp)
    output = np.array(tmp[-1, :]).reshape(utils.M_NUM, 1)
    return output
github DanielSola / mimic-iii-project / services / preprocessing_service.py View on Github external
def calculate_imputation_error(feature, numerical_data, numerical_features):
    numerical_data = numerical_data.copy(deep=True);
    feature_data = numerical_data[feature][0:200].copy().reset_index(drop = True);
    numerical_data[feature][0:200] = np.nan
    completed_numerical_data = pd.DataFrame(MICE(verbose = False).complete(numerical_data));
    completed_numerical_data.columns = numerical_features;
    imputed_feature = completed_numerical_data[feature][0:200];
    imputed_data = pd.DataFrame([feature_data, imputed_feature]).T
    imputed_data.columns =['Real value', 'Imputed value'];
    imputed_data['Imputation error (%)'] = np.abs((imputed_data['Real value']-imputed_data['Imputed value']) / imputed_data['Real value'])*100
    imputation_error = np.mean(imputed_data['Imputation error (%)'])
    print('Imputation error for',feature,': ', imputation_error);
    
    return [feature, imputation_error];