Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
@classmethod
def build_model(cls, args, src_dict, dst_dict):
"""Build a new model instance."""
encoder_embed_dict = None
if args.encoder_embed_path:
encoder_embed_dict = utils.parse_embedding(args.encoder_embed_path)
utils.print_embed_overlap(encoder_embed_dict, src_dict)
decoder_embed_dict = None
if args.decoder_embed_path:
decoder_embed_dict = utils.parse_embedding(args.decoder_embed_path)
utils.print_embed_overlap(decoder_embed_dict, dst_dict)
encoder = LSTMEncoder(
src_dict,
embed_dim=args.encoder_embed_dim,
embed_dict=encoder_embed_dict,
num_layers=args.encoder_layers,
dropout_in=args.encoder_dropout_in,
dropout_out=args.encoder_dropout_out,
)
decoder = LSTMDecoder(
dst_dict,
encoder_embed_dim=args.encoder_embed_dim,
embed_dim=args.decoder_embed_dim,
embed_dict=decoder_embed_dict,
out_embed_dim=args.decoder_out_embed_dim,
def load_pretrained_embedding_from_file(embed_path, dictionary, embed_dim):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx)
embed_dict = utils.parse_embedding(embed_path)
utils.print_embed_overlap(embed_dict, dictionary)
return utils.load_embedding(embed_dict, dictionary, embed_tokens)
def build_embedding(dictionary, embed_dim, path=None):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
emb = Embedding(num_embeddings, embed_dim, padding_idx)
# if provided, load from preloaded dictionaries
if path:
embed_dict = utils.parse_embedding(path)
utils.load_embedding(embed_dict, dictionary, emb)
return emb
def build_embedding(dictionary, embed_dim, path=None):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
emb = Embedding(num_embeddings, embed_dim, padding_idx)
# if provided, load from preloaded dictionaries
if path:
embed_dict = utils.parse_embedding(path)
utils.load_embedding(embed_dict, dictionary, emb)
return emb
def build_embedding(dictionary, embed_dim, path=None):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
emb = Embedding(num_embeddings, embed_dim, padding_idx)
# if provided, load from preloaded dictionaries
if path:
embed_dict = utils.parse_embedding(path)
utils.load_embedding(embed_dict, dictionary, emb)
return emb
def build_embedding(dictionary, embed_dim, path=None):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
emb = Embedding(num_embeddings, embed_dim, padding_idx)
# if provided, load from preloaded dictionaries
if path:
embed_dict = utils.parse_embedding(path)
utils.load_embedding(embed_dict, dictionary, emb)
return emb
def build_embedding(dictionary, embed_dim, path=None):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
emb = Embedding(num_embeddings, embed_dim, padding_idx)
# if provided, load from preloaded dictionaries
if path:
embed_dict = utils.parse_embedding(path)
utils.load_embedding(embed_dict, dictionary, emb)
return emb
def build_embedding(dictionary, embed_dim, path=None):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
emb = Embedding(num_embeddings, embed_dim, padding_idx)
# if provided, load from preloaded dictionaries
if path:
embed_dict = utils.parse_embedding(path)
utils.load_embedding(embed_dict, dictionary, emb)
return emb
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure that all args are properly defaulted (in case there are any new ones)
base_architecture(args)
encoder_embed_dict = None
if args.encoder_embed_path:
encoder_embed_dict = utils.parse_embedding(args.encoder_embed_path)
utils.print_embed_overlap(encoder_embed_dict, task.source_dictionary)
decoder_embed_dict = None
if args.decoder_embed_path:
decoder_embed_dict = utils.parse_embedding(args.decoder_embed_path)
utils.print_embed_overlap(decoder_embed_dict, task.target_dictionary)
encoder = FConvEncoder(
dictionary=task.source_dictionary,
embed_dim=args.encoder_embed_dim,
embed_dict=encoder_embed_dict,
convolutions=eval(args.encoder_layers),
dropout=args.dropout,
max_positions=args.max_source_positions,
)
decoder = FConvDecoder(
dictionary=task.target_dictionary,
embed_dim=args.decoder_embed_dim,
embed_dict=decoder_embed_dict,
convolutions=eval(args.decoder_layers),
out_embed_dim=args.decoder_out_embed_dim,