Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def _child_process(self, service):
self._child_process_handle_signal()
# Reopen the eventlet hub to make sure we don't share an epoll
# fd with parent and/or siblings, which would be bad
eventlet.hubs.use_hub()
# Close write to ensure only parent has it open
os.close(self.writepipe)
# Create greenthread to watch for parent to close pipe
eventlet.spawn_n(self._pipe_watcher)
# Reseed random number generator
random.seed()
launcher = Launcher()
launcher.launch_service(service)
return launcher
def _child_process(self, service):
self._child_process_handle_signal()
# Reopen the eventlet hub to make sure we don't share an epoll
# fd with parent and/or siblings, which would be bad
eventlet.hubs.use_hub()
# Close write to ensure only parent has it open
os.close(self.writepipe)
# Create greenthread to watch for parent to close pipe
eventlet.spawn_n(self._pipe_watcher)
# Reseed random number generator
random.seed()
launcher = Launcher()
launcher.launch_service(service)
return launcher
LOG.debug(_("Sending message(s) to: %s"), queues)
# Don't stack if we have no matchmaker results
if not queues:
LOG.warn(_("No matchmaker results. Not casting."))
# While not strictly a timeout, callers know how to handle
# this exception and a timeout isn't too big a lie.
raise rpc_common.Timeout(_("No match from matchmaker."))
# This supports brokerless fanout (addresses > 1)
for queue in queues:
(_topic, ip_addr) = queue
_addr = "tcp://%s:%s" % (ip_addr, conf.rpc_zmq_port)
if method.__name__ == '_cast':
eventlet.spawn_n(method, _addr, context,
_topic, msg, timeout, envelope,
_msg_id)
return
return method(_addr, context, _topic, msg, timeout,
envelope)
LOG.debug("Sending message(s) to: %s", queues)
# Don't stack if we have no matchmaker results
if not queues:
LOG.warn(_("No matchmaker results. Not casting."))
# While not strictly a timeout, callers know how to handle
# this exception and a timeout isn't too big a lie.
raise rpc_common.Timeout(_("No match from matchmaker."))
# This supports brokerless fanout (addresses > 1)
for queue in queues:
(_topic, ip_addr) = queue
_addr = "tcp://%s:%s" % (ip_addr, conf.rpc_zmq_port)
if method.__name__ == '_cast':
eventlet.spawn_n(method, _addr, context,
_topic, msg, timeout, envelope,
_msg_id)
return
return method(_addr, context, _topic, msg, timeout,
envelope)
def _child_process(self, service):
self._child_process_handle_signal()
# Reopen the eventlet hub to make sure we don't share an epoll
# fd with parent and/or siblings, which would be bad
eventlet.hubs.use_hub()
# Close write to ensure only parent has it open
os.close(self.writepipe)
# Create greenthread to watch for parent to close pipe
eventlet.spawn_n(self._pipe_watcher)
# Reseed random number generator
random.seed()
launcher = Launcher()
launcher.launch_service(service)
return launcher
def _send_gratuitous_arp_packet(self, ns_name, interface_name, ip_address,
distributed=False):
if self.conf.send_arp_for_ha > 0:
eventlet.spawn_n(self._arping, ns_name, interface_name, ip_address,
distributed)
def forward(source, dest, cb=lambda: None):
"""Forwards bytes unidirectionally from source to dest"""
while True:
d = source.recv(32384)
if d == '':
cb()
break
dest.sendall(d)
listener = eventlet.listen(('localhost', 7000))
while True:
client, addr = listener.accept()
server = eventlet.connect(('localhost', 22))
# two unidirectional forwarders make a bidirectional one
eventlet.spawn_n(forward, client, server, closed_callback)
eventlet.spawn_n(forward, server, client)
def communicate(self):
try:
self._invoke()
if not self.srequest.has_fd:
self._wait_for_write_with_timeout(self._input_data_write_fd)
# We do the writing in a different thread.
# Otherwise, we can run into the following deadlock
# 1. middleware writes to Storlet
# 2. Storlet reads and starts to write metadata and then data
# 3. middleware continues writing
# 4. Storlet continues writing and gets stuck as middleware
# is busy writing, but still not consuming the reader end
# of the Storlet writer.
eventlet.spawn_n(self._write_input_data,
self._input_data_write_fd,
self.srequest.data_iter)
for source in self.extra_data_sources:
# NOTE(kota_): not sure right now if using eventlet.spawn_n is
# right way. GreenPool is better? I don't get
# whole for the dead lock described in above.
self._wait_for_write_with_timeout(source['write_fd'])
eventlet.spawn_n(self._write_input_data,
source['write_fd'],
source['data_iter'])
out_md = self._read_metadata()
self._wait_for_read_with_timeout(self.data_read_fd)
return StorletResponse(out_md, data_fd=self.data_read_fd,
# read the output too.
def displayhook(val):
if val is not None:
pprint.pprint(val)
sys.displayhook = displayhook
sock = _listen('localhost', start_port, end_port, eventlet.listen)
# In the case of backdoor port being zero, a port number is assigned by
# listen(). In any case, pull the port number out here.
port = sock.getsockname()[1]
LOG.info(
_LI('Eventlet backdoor listening on %(port)s for process %(pid)d') %
{'port': port, 'pid': os.getpid()}
)
eventlet.spawn_n(eventlet.backdoor.backdoor_server, sock,
locals=backdoor_locals)
return port