Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def audio_labels():
from query.models import Speaker
from esper.stdlib import qs_to_result
return qs_to_result(Speaker.objects.all(), group=True, limit=10000)
def cars():
from query.models import Object
from esper.stdlib import qs_to_result
return qs_to_result(Object.objects.filter(label=3, probability__gte=0.9))
def segments_about_immigration():
from query.models import Segment
from esper.stdlib import qs_to_result
return qs_to_result(
Segment.objects.filter(
labeler__name='haotian-segments',
things__type__name='topic',
things__name='immigration'))
start = random.randint(0, v.num_frames - dur - 1)
end = start + dur
in_commercial = False
for c in commercials:
minf, maxf = (c['min_frame'], c['max_frame'])
if (minf <= start and start <= max) or (minf <= end and end <= maxf) \
or (start <= minf and minf <= end and start <= maxf and maxf <= end):
in_commercial = True
break
if not in_commercial:
break
else:
continue
conds.append({'video': v, 'min_frame__gte': start, 'max_frame__lte': end})
return qs_to_result(
Speaker.objects.filter(labeler__name='lium').filter(
reduce(lambda a, b: a | b, [Q(**c) for c in conds])),
group=True,
limit=None)
def all_faces():
from query.models import Face
from esper.stdlib import qs_to_result
return qs_to_result(Face.objects.all(), stride=1000)
def segments_about_donald_trump():
from query.models import Segment
from esper.stdlib import qs_to_result
return qs_to_result(
Segment.objects.filter(
labeler__name='haotian-segments',
things__type__name='person',
things__name='donald trump'))
from query.models import FaceIdentity
from esper.stdlib import qs_to_result
from esper.major_canonical_shows import MAJOR_CANONICAL_SHOWS
name='hillary clinton'
results = []
for show in sorted(MAJOR_CANONICAL_SHOWS):
qs = FaceIdentity.objects.filter(
identity__name=name,
face__shot__video__show__canonical_show__name=show,
probability__gt=0.9
)
if qs.count() > 0:
results.append(
(show, qs_to_result(qs, shuffle=True, limit=10))
)
return group_results(results)
def positive_segments():
from query.models import Segment
from esper.stdlib import qs_to_result
return qs_to_result(
Segment.objects.filter(labeler__name='haotian-segments',
polarity__isnull=False).order_by('-polarity'))
def not_handlabeled():
from query.models import Labeler, Tag, FaceGender
from esper.stdlib import qs_to_result
import random
l = Labeler.objects.get(name='rudecarnie')
t = Tag.objects.get(name='handlabeled-face:labeled')
i = random.randint(0, FaceGender.objects.aggregate(Max('id'))['id__max'])
return qs_to_result(
FaceGender.objects.filter(labeler=l, id__gte=i).exclude(
Q(face__frame__tags=t)
| Q(face__shot__in_commercial=True)
| Q(face__shot__video__commercials_labeled=False)
| Q(face__shot__isnull=True)),
stride=1000)
def negative_segments():
from query.models import Segment
from esper.stdlib import qs_to_result
return qs_to_result(
Segment.objects.filter(labeler__name='haotian-segments',
polarity__isnull=False).order_by('polarity'))